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RESEARCH ARTICLE

Full automation of total metabolic tumor 
volume from FDG-PET/CT in DLBCL for baseline 
risk assessments
S. Jemaa1, J. N. Paulson2, M. Hutchings3, L. Kostakoglu4, J. Trotman5, S. Tracy2, A. de Crespigny6, R. A. D. Carano1, 
T. C. El‑Galaly7, T. G. Nielsen8* and T. Bengtsson1,9   

Abstract 

Background: Current radiological assessments of 18fluorodeoxyglucose‑positron emission tomography (FDG‑PET) 
imaging data in diffuse large B‑cell lymphoma (DLBCL) can be time consuming, do not yield real‑time information 
regarding disease burden and organ involvement, and hinder the use of FDG‑PET to potentially limit the reliance on 
invasive procedures (e.g. bone marrow biopsy) for risk assessment.

Methods: Our aim is to enable real‑time assessment of imaging‑based risk factors at a large scale and we propose a 
fully automatic artificial intelligence (AI)‑based tool to rapidly extract FDG‑PET imaging metrics in DLBCL. On avail‑
ability of a scan, in combination with clinical data, our approach generates clinically informative risk scores with 
minimal resource requirements. Overall, 1268 patients with previously untreated DLBCL from the phase III GOYA trial 
(NCT01287741) were included in the analysis (training: n = 846; hold‑out: n = 422).

Results: Our AI‑based model comprising imaging and clinical variables yielded a tangible prognostic improvement 
compared to clinical models without imaging metrics. We observed a risk increase for progression‑free survival (PFS) 
with hazard ratios [HR] of 1.87 (95% CI: 1.31–2.67) vs 1.38 (95% CI: 0.98–1.96) (C‑index: 0.59 vs 0.55), and a risk increase 
for overall survival (OS) (HR: 2.16 (95% CI: 1.37–3.40) vs 1.40 (95% CI: 0.90–2.17); C‑index: 0.59 vs 0.55). The combined 
model defined a high‑risk population with 35% and 42% increased odds of a 4‑year PFS and OS event, respectively, 
versus the International Prognostic Index components alone. The method also identified a subpopulation with a 
2‑year Central Nervous System (CNS)‑relapse probability of 17.1%.

Conclusion: Our tool enables an enhanced risk stratification compared with IPI, and the results indicate that imaging 
can be used to improve the prediction of central nervous system relapse in DLBCL. These findings support integration 
of clinically informative AI‑generated imaging metrics into clinical workflows to improve identification of high‑risk 
DLBCL patients.

Trial Registration: Registered clinicaltrials.gov number: NCT01287741.
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Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin lymphoma (NHL), account-
ing for 30–40% of all cases [1]. Current first-line standard 
of care consists of rituximab, cyclophosphamide, doxo-
rubicin, vincristine, and prednisone (R-CHOP) combina-
tion therapy; however, patient outcomes vary due to the 
genotypic and phenotypic heterogeneity of DLBCL [2, 3]. 
While R-CHOP induces durable responses in up to 70% 
of patients, the identification of the sizeable minority of 
patients with insufficient response to R-CHOP is a clinical 
challenge [4]. Patients with relapsed/refractory DLBCL 
have poor outcomes, with a previous study demonstrat-
ing a 1-year overall survival (OS) of only 41.6% in patients 
undergoing autologous stem cell transplantation [5]. 
Patients with primary refractory disease generally have 
the worst prognosis, with only 20% surviving for more 
than 2  years [6]. However, with chimeric antigen recep-
tor T-cell therapy patients refractory to chemotherapy 
have shown high response rate and overall survival in the 

second line setting for transplant candidates (2-year OS of 
61%) [7] and for patients not eligible for transplant or later 
relapse (1 year OS of 49%) [8].

Current clinical prognostic risk-stratification models 
are not optimal for the identification of patients with the 
highest risk for treatment failure, who should be consid-
ered for alternative treatment strategies, including clini-
cal trials with experimental therapies. The widely used 
International Prognostic Index (IPI) is based on patient 
parameters, including performance status, age, Ann 
Arbor stage, number of extranodal sites, and serum lac-
tate dehydrogenase (LDH) levels [9]. This model gives 
suboptimal sensitivity and specificity in identifying 
patients who are unlikely to achieve durable remission; 
for example, a previous study demonstrated that patients 
with a 3-year progression-free survival (PFS) or OS below 
50% were unable to be identified by IPI [10]. Variations 
of the IPI, such as the National Comprehensive Cancer 
Network (NCCN)-IPI, have been developed with limited 
improvement in prognostic performance [11].

Graphical Abstract
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 [12]Fluorodeoxyglucose-positron emission tomog-
raphy (FDG-PET) is a commonly used imaging tool in 
oncology, where metabolic activity of tumors can be 
assessed by three-dimensional measurements of the 
tracer uptake distribution [13–15]. While FDG uptake 
can vary considerably across different lymphoma types, 
aggressive NHLs with fast tumor growth generally 
exhibit high FDG uptake, making PET/computed tomog-
raphy (CT) particularly powerful for the visualization of 
these subtypes [13, 16]. The distribution and volume of 
disease on FDG-PET/CT imaging have been shown to be 
prognostic of clinical outcome in DLBCL [17], with high 
tumor volumes associated with poorer outcomes [18]. 
The recently proposed International Metabolic Prognos-
tic Index (IMPI) shows that manually assessed TMTV 
adds sensitivity to IPI for high risk patient identification 
in DLBCL [19].

The determination of total metabolic tumor vol-
ume (TMTV) is generally based on semi-automatically 
defined volumes of interest (VOI) around the tumor 
using a software visualization program; however, often 
these VOIs are manually adjusted by the nuclear medi-
cine specialist to include the entire tumor and avoid 
healthy tissues. Overall, this process is time-consuming, 
labor intensive and observer-dependent. The determina-
tion of other imaging metrics, e.g. bone marrow involve-
ment or extra-nodal involvement, may be individually 
faster to extract manually but time limitations do not 
allow the extraction of a large set of such metrics. Lever-
aging deep learning for automated disease identification 
on FDG-PET/CT images enables global and location-/
organ-specific measurements of disease burden in NHL, 
and provides fast collection of highly granular, patient-
level (metabolically active) tumor information. Tumor 
characterization assessed by fast, transparent, and repro-
ducible automated algorithms [20–, 21–23] could add 
important prognostic information to currently used clini-
cal risk scores and improve the identification of high-risk 
patients who are unlikely to respond to standard therapy. 
It is therefore desirable to streamline the evaluation of 
imaging-based risk factors to allow for the evaluation of 
imaging evidence in the care of DLBCL at a scale that 
was previously not possible.

Statistical models that combine clinical and imaging 
markers may improve prognostication in DLBCL, thus 
enabling risk-adapted treatment strategies at the time of 
diagnosis. These models may also support faster develop-
ment of novel treatment strategies that are more effec-
tive in patients at high risk of progression or relapse. The 
primary objective of this study was to evaluate baseline 
automated FDG-PET/CT imaging metrics in combina-
tion with clinical risk factors in modeling prognosis for 
patients with de novo DLBCL. Secondary objectives 

included prediction of central nervous system (CNS) 
relapse, and an evaluation of whether a fully automated 
algorithm could reproduce the prognostic relevance 
of bone marrow and other extranodal involvement in 
DLBCL.

Methods
Patients
This study analyzed data from the randomized phase III 
GOYA trial (NCT01287741), a multicenter, open-label 
trial comparing the efficacy of obinutuzumab (G; GA101) 
in combination with CHOP (G-CHOP) versus R-CHOP 
in 1418 previously untreated patients with CD20-positive 
DLBCL [24]. The GOYA trial identified no significant dif-
ference in survival outcomes between the G-CHOP and 
R-CHOP treatment arms [24, 25], and so the arms were 
combined for the present analysis. The study design and 
eligibility criteria for the GOYA trial have been previ-
ously described [25].

The trial was conducted in accordance with the Dec-
laration of Helsinki and the International Conference 
on Harmonization of Good Clinical Practice guidelines. 
Trial protocol approval was obtained from the ethics 
committee/institutional review board at each participat-
ing institution and written informed consent to partici-
pate was provided by all patients.

FDG‑PET/CT imaging
Baseline FDG-PET/CT imaging was performed 
1–35  days prior to the first dose of study treatment 
(R-CHOP or G-CHOP) at study sites where a PET/CT 
scanner was available [24]. All PET/CT scans were per-
formed according to a standardized imaging protocol, 
centrally collected and segmented using a semi-auto-
mated workflow (MIM Software Inc, OH, US) by an 
independent review facility, as previously described [12]. 
Three experienced nuclear medicine physicians reviewed 
baseline PET/CT scans collected in real time during 
the study. TMTV was calculated using a tumor thresh-
old of 1.5 times the mean SUV of the liver + 2 standard 
deviations. Only those tumors that measured > 1  mL 
were included in the TMTV calculation. FDG-PET/CT 
images were analyzed using a deep learning algorithm, 
as developed and defined by Jemaa et  al. (performed at 
Genentech, Inc.) [20]. The method does not require the 
user to indicate a specific intensity threshold for each 
scan. The models are trained to recognize tumors on 
both spatial and intensity information in the 1.5*liver 
SUV + 2*standard deviations TMTV thresholded ground 
truth segmentation by radiologists. Total and by-organ/-
location number and volume of lesions were extracted 
using the generated tumor and organ/-location masks. 
The models in this analysis were trained on the training 
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set summarized below including 624 scans without meta-
bolically active lesions. Tumor segmentation and organ 
and location segmentation are described in the Supple-
mentary Methods and Supplemental Table 1.

Endpoints and assessments
We assessed and quantified the association between 
baseline automated imaging metrics and clinical out-
come, including investigator-assessed PFS and OS, and 
determined whether the addition of imaging metrics to 
clinical variables can improve outcome risk prediction 
and in particular identification of patients at high risk at 
baseline.

We further evaluated whether a fully automated algo-
rithm could reproduce the prognostic relevance of 
extranodal and bone marrow involvement observed 
using visual or PET/CT assessments [26, 27]. The cor-
relation of extranodal disease and automated TMTV 
(aTMTV) was also explored to determine whether high 
extranodal disease burden was strongly correlated to 
high overall aTMTV. Additionally, the association of 
extranodal disease with outcome was examined through 
the comparison of outcomes in patients by the number 
of extranodal sites involved (by aTMTV). The association 
between automatically extracted imaging information 
and CNS relapse, using survival analysis and data from 
Klanova et al [28] was evaluated. The correlation between 
aTMTV and other clinically relevant measures (LDH 
and Ann Arbor stage) was investigated as an exploratory 
endpoint, as well as the correlation between LDH and 
extranodal involvement.

Statistical analysis
A training and hold-out set were developed for repro-
ducibility and prognostic modeling activities for GOYA. 
The general strategy in defining a hold-out set is to select 
a prespecified proportion (33%) of trial participants 
and balance for important study-specific variables. The 
balancing variables used for the GOYA trial included 
the antibody received (G or R), IPI risk category (high, 
intermediate-high, or low), number of PFS events, num-
ber of OS events, and manual TMTV (quartiles and not 
available).

Tumor segmentation CNNs were trained on screening 
and end of treatment scans while statistical analyses were 
applied only for screening scans.

As a practical approach, imaging metrics were dichot-
omized as to location involvement/no-involvement, by 
extranodal sites > 1 (as done in IPI), or by quartile splits 
(i.e.,, TMTV, number of total lesions.) For LDH and 
hemoglobin we have used the ULN and LLN respectively, 
while 65 years age is considered the threshold for elderly 
by the FDA. In addition, as extensively used risk factors 

in DLBCL, we also explore IPI > 2 and ECOG PS > 1 in 
our analysis. The selection of the best prognostic models 
was done as follows. A univariate `sweep’ was first per-
formed in the training set by retaining statistically sig-
nificant univariate factors. For joint variable selection, 
again using the training set, the univariately significant 
variables were then submitted to a multivariate LASSO 
Cox PH regression [29], with the best performing model 
identified using fivefold cross-validation. The variables 
identified by the preceding LASSO step were used to 
fit a multivariate Cox PH model on the training set, i.e. 
the ‘final model’’. This model was finally applied out-of-
sample on the test set. Model performance was evaluated 
by area under the receiver operating characteristic curve 
(AUC) and C-index on the hold-out population.  For 
extranodal involvement, the algorithm estimated the 
mass of the lung, liver, spleen, and bone lymphoma 
involvement, which are among the more commonly 
involved extranodal areas in DLBCL [10]. The joint mul-
tivariate Cox PH models were used to calculate hazard 
ratios (HRs) and the 95% confidence intervals (95% CIs) 
to compare model performance. From the training set, 
the cut-off for the risk score was defined as the median 
risk score. Kaplan–Meier estimates were used to ana-
lyze time-to-event data. All statistical analyses and tests 
were performed using R 3.6.3 and the Survival package 
(the Wald test was used for the univariate and multivari-
ate models and log rank tests were used for the survival 
curves) [30].

Results
Patient demographics and disease characteristics
Overall, 1418 patients were enrolled in the GOYA trial 
and 1407 were included in the safety-evaluable popula-
tion (SEP); of these, 1268 patients with baseline FDG-
PET/CT images available for automated assessment of 
imaging metrics were included in the evaluable popu-
lation (EP). Patients excluded from the EP included 
99 patients without screening FDG-PET/CT scans, 15 
patients with no Attenuation Corrected CT scans and 
25 patients whose FDG-PET scans could not be pro-
cessed. Patients were further divided into predefined 
training (n = 846) and hold-out populations (n = 422). 
Patient demographics and clinical characteristics were 
similar between the GOYA SEP, the EP, and the non-EP 
(Table  1). No clinically relevant difference in outcome 
was observed for patients in the SEP versus patients 
in the EP; however, a higher survival probability was 
observed for the EP compared with the non-EP (Supple-
mental Fig. 1). The median duration of follow-up for all 
patients was 48.2 months (range, 0.16–78.2).

aTMTV (Median = 279  mL, range 0-9693  mL) cor-
related highly with manual TMTV (Median = 347  mL, 
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range 0-9694  mL; Spearman’s ρ = 0.96), the DICE score 
on the test set was 0.88 and the average number of true 
and false positive lesions detected per scan were 7.08 
and 0.61, respectively, in the test set. The average num-
ber of false negative lesions per scan was 0.82 in the test 
set. An increased number of extranodal sites correlated 
with high aTMTV (Supplemental Fig.  2). An evalua-
tion of the association between the extent of extranodal 
involvement and PFS showed that the risk of disease pro-
gression was greater with increasing numbers of extran-
odal sites (Supplemental Table 2; Fig. 1A). Similar results 

were observed in a sensitivity analysis considering splenic 
lesions as nodal for both the association between extran-
odal involvement and aTMTV, and extranodal involve-
ment and PFS.

aTMTV trended towards an association with LDH 
(Spearman ρ = 0.503, Supplemental Fig.  3A; a correla-
tion between LDH and extranodal involvement was also 
observed [Supplemental Fig.  3B]) as was a correlation 
between Ann Arbor stage and aTMTV (Supplemental 
Fig. 4).

Positive bone marrow involvement observed with 
FDG-PET/CT, was also associated with reduced PFS, 
with patients testing positive by fully automated assess-
ment being at a higher risk of disease progression (2-year 
PFS probability, 68%; 95% CI, 63–74) than those who 
were negative (2-year PFS probability, 76%; 95% CI, 
73–79; P < 0.0001; Fig.  1B). Similarly, a positive baseline 
bone marrow biopsy was a risk factor for inferior PFS, 
particularly when accompanied by positive bone marrow 
involvement on PET/CT (Fig. 1C; Supplemental Table 3).

Prognostic model comprising imaging parameters 
combined with clinical variables for predictability of CNS 
relapse and disease outcome
The results for the univariate variable screen for PFS 
(Fig.  2) indicated that all variables except treatment, 
spleen involvement and age > 65  years were statistically 
significant (P < 0.05). For PFS, the LASSO Cox regres-
sion identified a model comprising three imaging metrics 
(aTMTV > third quartile, number of lesions > 4 [median], 
and liver involvement) combined with four standard 
clinical variables (hemoglobin < lower limit of normal, 
Eastern Cooperative Oncology Group Performance Sta-
tus (ECOG PS) > 1, Ann Arbor stage IV, LDH > upper 
limit of normal; Supplemental Fig.  5). HRs and CIs for 
the imaging metrics and clinical variables in the identi-
fied multivariate Cox PH model and the 4-year PFS prob-
ability are listed in Table 2. The model showed improved 
performance (AUC = 0.61, C-index = 0.63 [hold-out set]) 
compared with the model comprising standard clini-
cal variables only (AUC = 0.57, C-index = 0.59 [hold-out 
set]; Supplemental Fig.  6). Of note, in the multivariate 
model, Ann Arbor stage IV (HR, 1.49; 95% CI, 1.08–1.96; 
P = 0.01) and number of lesions > 4 (median; HR, 1.91; 
95% CI, 1.34–2.71; P < 0.001) were identified as independ-
ent parameters of significant value for predicting PFS.

The high-risk population from the multivariate prog-
nostic model that combined imaging and clinical vari-
ables was associated with a significantly increased risk of 
CNS relapse compared with the low-risk population (by 
median split; HR, 5.42; 95% CI, 2.24–13.14). The 2-year 
CNS-relapse probability for the high-risk population was 
5.0% (95% CI, 3.0–6.9), and 0.5% (95% CI, 0.0–1.1) for the 

Table 1 Patient demographics and clinical characteristics for the 
SEP (GOYA), the EP and the non‑EP

ECOG PS Eastern Cooperative Oncology Group performance status, EP Evaluable 
population, G-CHOP Obinutuzumab plus cyclophosphamide, doxorubicin, 
vincristine and prednisone; obinutuzumab, IPI International Prognostic Index, 
LDH lactate dehydrogenase, LLN lower limit of normal, R-CHOP Rituximab 
plus cyclophosphamide, doxorubicin, vincristine and prednisone, SEP Safety-
evaluable population

Safety‑evaluable 
(GOYA)
(N = 1407)

EP
(N = 1268)

Non‑EP
(N = 139)

Treatment, n (%)
 G‑CHOP 704 (50) 636 (50) 68 (49)

 R‑CHOP 703 (50) 632 (50) 71 (51)

Age, years
 Mean 59 59 58

 Median 62 62 60

 Min–max 18–86 18–86 19–81

Sex, n (%)
 Female 663 (47) 595 (47) 68 (49)

 Male 744 (53) 673 (53) 71 (51)

IPI at baseline, n (%)
 0–2 781 (56) 709 (56) 72 (52)

 3–5 626 (44) 559 (44) 67 (48)

ECOG PS, n (%)
 0–1 1222 (87) 1110 (88) 112 (81)

  ≥ 2 184 (13) 157 (12) 27 (19)

 Missing 1 (0) 1 (0) 0

Serum LDH at baseline, n (%)
 Elevated 811 (58) 724 (57) 87 (63)

 Normal 592 (42) 540 (43) 52 (37)

 Missing 4 (0) 4 (0) 0

Hemoglobin, n (%)
  < LLN 702 (50) 627 (49) 64 (46)

  ≥ LLN 705 (50) 641 (51) 75 (54)

Ann Arbor stage, n (%)
 I–II 339 (24) 302 (24) 37 (27)

 III–IV 1068 (76) 966 (76) 102 (73)

Extranodal involvement, n (%)
  ≤ 1 910 (65) 815 (64) 95 (68)

  > 1 497 (35) 453 (36) 44 (32)
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low-risk population. We combined the CNS International 
Prognostic Index (CNS-IPI) and the model incorporat-
ing imaging and clinical variables to define three levels 
of risk. The high-risk population was defined as patients 
with a high-risk score by CNS-IPI and a risk score from 
the model incorporating imaging variables above the  90th 

percentile. This combined model identified a subpopula-
tion with a 2-year CNS-relapse probability of 17.1% (95% 
CI, 6.1–26.8; Fig. 1D).

In both the training and the hold-out set, patients at 
high risk in both the model comprising clinical param-
eters alone (Figs. 3A and B, respectively) and the model 

A B

C D

Fig. 1 PFS in the full EP by (A) number of extranodal sites*, (B) bone involvement by PET/CT and (C) baseline bone marrow biopsy and bone 
involvement by PET/CT, and (D) CNS relapse by the model incorporating imaging metrics and CNS‑IPI. *Extranodal involvement was estimated by 
combining tumor masses in the lungs, liver, spleen, and bone tumor involvement. BMB, bone marrow biopsy; CI, confidence interval; CNS, central 
nervous system; CNS‑IPI, CNS International Prognostic Index; CT, computed tomography; EP, evaluable population; IPI, International Prognostic 
Index; HR, hazard ratio; PET, positron‑emission tomography; PFS, progression‑free survival
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including imaging metrics (Figs.  3C and D, respec-
tively) had a worse PFS compared with patients at low 
risk. In the hold-out set, the model identified patients 
with an increased PFS risk (HR, 1.87; 95% CI, 1.31–
2.67; Fig.  3D) compared with the model with clinical 
variables alone (HR, 1.38; 95% CI, 0.98–1.96; Fig.  3B), 
and an increased OS risk (HR, 2.16; 95% CI, 1.37–3.40) 
compared with clinical variables alone (HR, 1.40; 95% 
CI, 0.90–2.17; Table 3).

In the hold-out set, the model incorporating imag-
ing metrics defined a high-risk population with a 35% 
and 42% increase in odds of 4-year PFS and 4-year 
OS events, respectively, compared to the model 
composed of the IPI components alone (age, ECOG 
PS, Ann Arbor stage, LDH elevated and number of 
extranodal sites). In terms of absolute risk, the high-
risk group had a 4-year PFS probability of 60% (95% 
CI, 53–67) and the low-risk group had a 4-year PFS 
probability of 77% (95% CI, 71–83) in the model 
incorporating imaging metrics; while for the model 
with clinical parameters only, the probabilities for 
4-year PFS were 64% (95% CI, 58–71) and 72% (95% 
CI, 66–79), respectively (Table 3).

The 4-year probability for OS for the model includ-
ing the automatically extracted tumor parameters in the 
hold-out set was 75% (95% CI, 69–81) for the high-risk 
group and 88% (95% CI, 84–93) for the low-risk group 
(Table 3). For the model with clinical variables only, these 
OS probabilities were 78% (95% CI, 73–84) and 85% (95% 

CI, 80–90), respectively (Table  3). The results for the 
training set are reported in Table 4.

Discussion
The availability of accurate prognostication tools for 
DLBCL is limited and, with the advent of various new 
treatment options and novel therapies, there is an unmet 
need for reliable methods to predict disease outcomes. 
The current study evaluated automated FDG-PET/CT 
imaging metrics, derived using artificial intelligence 
(AI), as potential granular-level, fast, and scalable tools 
for risk stratification. This method produces risk assess-
ments in real-time upon scan availability. We analyzed 
whether incorporating these automated imaging param-
eters, alongside known prognostic clinical variables, for 
modeling PFS/OS in patients with de novo DLBCL could 
provide additional prognostic value in predicting disease 
outcome (OS/PFS). We showed that such metrics can 
provide a tangible improvement in risk stratification rela-
tive to standard clinical variables.

To assess the performance of our model comprising 
imaging and clinical variables, we compared it with IPI, 
which is currently a widely used tool in clinical practice 
and was applied as a stratification factor in the GOYA 
trial. We evaluated differences between PFS by IPI risk 
group and the risk score produced by the imaging/clinical 
metric-based model for the same subpopulation sizes as 
the IPI 3–5 subgroup (44%; Table 1). A greater difference 
between risk groups was observed for 2-year PFS and OS 

Table 2 HRs and CIs for PFS for the multivariate Cox PH model with imaging metrics and the multivariate Cox PH model with clinical 
variables only (training set)

CI confidence interval, ECOG PS Eastern Cooperative Oncology Group performance status, HR Hazard ratio, LDH Lactate dehydrogenase, LLN Lower limit of normal, OS 
Overall survival, PFS Progression-free survival, PH Proportional hazard, Q3 Third quartile, TMTV Total metabolic tumor volume

PFS OS

HR 95% CI P‑value C‑Index
test set

AUC 2‑years
test set

HR 95% CI P‑value C‑Index test set AUC 
2‑years 
test set

Cox PH model with imaging metrics
 Hemoglobin < LLN 1.22 0.94–1.58 .13 1.37 0.99–1.89 .06

 ECOG PS > 1 1.26 0.89–1.78 .19 1.29 0.84–1.96 .24

 Ann Arbor stage IV 1.41 1.10–1.82 .007 1.49 1.08–2.04 .01

 aTMTV > Q3 1.31 0.98–1.74 .06 0.63 0.59 1.18 0.83–1.67 .35 0.62 0.61

 Number of lesions > 4 (median) 1.62 1.23–2.71 .0006 1.91 1.34–2.71 .0003

 Liver involvement 1.16 0.82–1.64 .40 1.03 0.68–1.58 .88

 LDH elevated 1.12 0.86–1.46 .39 1.30 0.93–1.82 .12

Cox PH model with clinical variables only
 Hemoglobin < LLN 1.40 1.09–1.80 .01 1.57 1.14–2.15 .005

 ECOG PS > 1 1.40 0.99–1.96 .05 0.59 0.57 1.39 0.92–2.10 .11 0.59 0.57

 Ann Arbor stage IV 1.61 1.26–2.05 .0001 1.68 1.24–2.28 .0009

 LDH elevated 1.30 1.01–1.68 .04 1.51 1.09–2.09 .01
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according to high or low risk for the model that included 
imaging metrics (17.5% for PFS and 7.4% for OS) com-
pared with IPI risk groups 0–2 versus 3–5 (11.2% and 
5.3%, respectively; data not shown). We note that the 

risk assessments produced by our model are useful only 
to identify faster-progressing patients who, per the train-
ing data, are more likely to be R/G-CHOP-resistant or 
refractory. Additional patient-level information, such as a 

TRT

A

B

AGE>65
IPI>2
ECOG>1
LDH Elevated
HGB < LLN
Ann Arbor Stage
TMTV > Median
TMTV > Q3
Bulky disease
Number of lesions > Median
Bone Involvement
Liver Involvement
Spleen Involvement
Lung Involvement
Extranodal Sites > 1

HR
0.95
1.16
1.69
1.56
1.43
1.58
1.72
1.63
1.91

1.5
2.08
1.56
1.78
1.31
1.43
1.72

Lower
0.75
0.91
1.33
1.12
1.12
1.24
1.36
1.28
1.48
1.08
1.62

1.2
1.28
0.97
1.07
1.29

Upper
1.21
1.47
2.15
2.19
1.84
2.01
2.19
2.08
2.45
2.08
2.68
2.02
2.47
1.78
1.92
2.28

0.71 1.0 1.41 2.0

TRT
AGE>65
IPI>2
ECOG>1
LDH Elevated
HGB < LLN
Ann Arbor Stage
TMTV > Median
TMTV > Q3
Bulky disease
Number of lesions > Median
Bone Involvement
Liver Involvement
Spleen Involvement
Lung Involvement
Extranodal Sites > 1

HR
1.11
1.37
2.06
1.64

1.7
1.82
1.84
1.67
1.94
1.71
2.48
1.62
1.72
1.25
1.44
1.77

Lower
0.82
1.02
1.52
1.09
1.23
1.34
1.36
1.23
1.42
1.11
1.79
1.18
1.15
0.85

1
1.25

Upper
1.5

1.85
2.8

2.46
2.33
2.48
2.49
2.27
2.64
2.63
3.42
2.23
2.58
1.84
2.07
2.51

0.71 1.0 1.41 2.0

Fig. 2 Forest plots for univariate HRs with 95% CIs for (A) investigator‑assessed PFS and (B) OS in the training set (n = 846). Involvement was 
defined as the presence of at least one FDG‑avid lesion in the organ or location of interest. CI, confidence interval; ECOG PS, Eastern Cooperative 
Oncology Group performance status; FDG, fluorodeoxyglucose; G‑CHOP, obinutuzumab plus cyclophosphamide, doxorubicin, vincristine, and 
prednisone; HR, hazard ratio; IPI, International Prognostic Index; LDH, lactate dehydrogenase; LLN, lower limit of normal; OS, overall survival; PFS, 
progression‑free survival; Q3, third quartile; TMTV, total metabolic tumor volume
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patient’s gene expression or mutational profile, or tissue 
diagnostics, may enable matching individual patients to 
the best therapy, e.g. an appropriate targeted therapy.

The model incorporating automatically derived imag-
ing metrics defined a new high-risk population with 
a 35% increase in the odds of a 4-year PFS event, com-
pared with the population defined by the IPI components 
alone (hold-out set). An increased risk for PFS and for 
OS was also observed when imaging parameters were 
incorporated, compared with clinical parameters alone 

(hold-out set; PFS HR, 1.87 vs 1.38; OS HR, 2.16 vs 1.40, 
respectively).

Based on the results, assuming an annual rate of 18 000 
newly diagnosed patients [31] with DLBCL in the US, the 
proposed model could potentially identify an additional 
1350 patients at high risk, compared with IPI risk strati-
fication alone. This result represents a tangible increase 
in model performance for a disease where current clini-
cal risk models are suboptimal for identifying patients 
at high risk of early R-CHOP failure, which is associated 

A B

C D

Fig. 3 Investigator‑assessed PFS by clinical variables in (A) the training (N = 846) and (B) the hold‑out set (N = 422), and (C) the model incorporating 
imaging metrics in the training and (D) the hold‑out set. CI, confidence interval; HR, hazard ratio; PFS, progression‑free survival
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with very poor outcomes [6]. In fact, clinical risk mod-
els such as IPI have stronger performance when identify-
ing patients at low risk of disease progression [10]. These 
findings support the integration of additional informa-
tion such as imaging metrics into the currently used clin-
ical risk models to improve the identification of patients 
with de novo DLBCL at high risk. We note that having a 
fully automated model allows the addition of the imaging 
metrics delineated here in an efficient and fast manner.

We also assessed the recently published IMPI method 
to identify high risk patients in Goya. When comparing 
to IPI, based on the same subgroups sizes, this analysis 
showed that patients at high risk by IMPI had 3-years 
PFS and OS probabilities of 55% (48–62) and 67% (60–
74) while patients at high risk by IPI had 3-year PFS 
and OS probabilities of 57% (50–64) and 68% (62–75). 
aTMTV attains the same prognostic information as man-
ual TMTV on this dataset with 3-year PFS and OS of 54% 
and 64% (see details in the Supplemental Table 5). Using 
the proposed 10/30/60% stratification for high, inter-
mediate and low risk groups proposed by the authors 
of IMPI [19], that patients in the high risk group by our 
proposed multivariate risk score including clinical and 
imaging metrics have lower 3  year PFS and 3  year OS 
(respectively 51.7% and 64.2%) than patients in the high 
risk group by IMPI (3-year PFS of 59.2% and 3-year OS of 
70.5%, see details in Supplemental Table 6).

Previous studies have shown that high TMTV is asso-
ciated with inferior survival outcomes in lymphoma [12, 
32]. In the current study, we demonstrated that aTMTV 
was prognostic and correlated with known indicators of 
unfavorable survival outcomes such as LDH (Spearman 
ρ = 0.503; a correlation between LDH and extranodal 
involvement was also observed), as well as Ann Arbor 
stage and extranodal involvement (which was estimated 
by the combination of the tumor masses in the lungs, 
liver, spleen, and bone tumor involvement; we acknowl-
edge that some physicians may consider spleen involve-
ment as nodal involvement).

To assess the association between automatically 
extracted imaging information and CNS relapse, we 
analyzed a combined model of CNS-IPI and the model 
incorporating imaging and CNS variables to define three 
levels of risk. This combined model allowed us to iden-
tify a subpopulation of patients (5.5% of the total popu-
lation) with a 2-year CNS-relapse probability of 17.1%. 
Compared with CNS-IPI alone, which separated the 
GOYA population into three risk-groups (2-year cumula-
tive CNS relapse rates: 0.8%, 1.9% and 8.9%, respectively) 
[28], the combined model appeared to better identify 
patients at high risk of CNS relapse who may benefit 
from CNS prophylaxis and identifies a large subpopu-
lation that could be spared from invasive diagnosis and 

CNS prophylaxis. These results show that fully auto-
mated assessments could further refine risk assessment 
for patients in a high-risk CNS-IPI group. Corroborating 
previous reports [33–, 34–36], we found that PET-CT 
identified more patients with bone marrow involvement 
than bone marrow biopsy, thus providing further evi-
dence for the role of PET-CT in the staging of DLBCL. 
As shown in Fig. 1C, BMB and PET provide complemen-
tary yet overlapping information, patients that have both 
a positive biopsy and a positive PET have the worst prog-
nosis, those with either a positive biopsy or a positive 
PET have an intermediate risk, and those with neither 
have the best outcome.

The analysis and interpretation of FDG-PET images in 
current clinical practice is performed by trained physi-
cians and is mostly based on visual analysis and stand-
ardized uptake value assessment. Although it has not 
yet translated to clinical practice, when TMTV infor-
mation is required, this is performed manually or using 
semi-automated analysis software [20], which is time-
consuming and labor intensive; furthermore, the high 
degree of reproducibility that is of prime importance for 
these assessments is not always achievable with manual-
based methods [20]. The fully automated segmentation 
algorithm described here has the potential to accurately 
assess tumor burden in patients with DLBCL, while pro-
viding substantial time savings and reduced work burden 
for physicians.

The algorithm used in this analysis was previously 
shown to have a high degree of correlation with con-
ventionally measured TMTV performed by experienced 
nuclear medicine specialists [20]. In the present study, 
the prognostic utility of the algorithm was confirmed in 
patients with first-line DLBCL treated with R/G-CHOP; 
thus, AI-based algorithms were able to obtain fully auto-
mated TMTV measures in DLBCL that both correlate 
well with conventional measures of TMTV and provide 
relevant prognostic information.

Our findings generally agree with the literature for 
TMTV [12, 32]. The observation of a significant role of 
aTMTV in predicting survival outcomes in such a set-
ting emphasizes the strength of aTMTV as a prognostic 
biomarker for identification of patients with DLBCL at 
high risk at the time of diagnosis, regardless of response 
to therapy [32]. Furthermore, the combination of TMTV 
with clinical variables has been shown to improve 
patient-risk stratification in a previous study of patients 
with peripheral T-cell lymphoma [37], which also sup-
ports the integration of automated imaging metrics into 
models comprised of clinical variables alone.

Limitations of this study included the multicollinearity 
among metrics (for example, IPI scores consider extran-
odal sites and LDH), which can undermine the statistical 
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significance of an independent variable. Furthermore, 
there was a paucity of patients at a very high risk in the 
GOYA trial, as these patients typically require urgent 
treatment and therefore are not amenable to the delay 
to treatment initiation that is required for clinical trial 
enrollment. Other limitations include the need for a co-
acquired CT scan along with the PET and the assessment 
of the proposed method only on clinical trial images fol-
lowing a standard imaging protocol. In addition, a mini-
mal lesion size of 1  mL was used in the ground truth 
annotations; smaller lesions could be detected with more 
recent PET scanners.

We plan prospective validation of this fully automated 
FDG-PET/CT-based algorithm in external data sets (e.g. 
planned phase III DLBCL studies and data acquired as 
part of standard of care). Implementation into radio-
logical and oncological workflows is needed to ensure 
maximal utility in clinical practice, and we are exploring 
making a research-only version of the software available 
on a limited basis to collaborating institutions.

Conclusion
In this analysis of the GOYA trial, AI-enabled, fully auto-
mated baseline imaging metrics demonstrated prognostic 
value additional to standard clinical variables in predict-
ing high-risk de novo DLBCL. These findings support the 
integration of both automated imaging and clinical fac-
tors in prognostic models to improve the accurate identi-
fication of patients with de novo DLBCL who are at high 
risk at a large scale, which could potentially assist in the 
development of optimized treatment strategies.
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