22 research outputs found

    Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts

    No full text
    Gentamicin, an aminoglycoside antibiotic, induces apoptosis in the proximal tubule epithelium of rats treated at low, therapeutically relevant doses (El Mouedden et al., Antimicrob. Agents Chemother. 44, 665-675, 2000). Renal cell lines (LLC-PK(1) and MDCK-cells) have been used to further characterize and quantitate this process (electron microscopy; terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling of fragmented DNA [TUNEL]; and DNA size analysis [oligonucleosomal laddering]). Cells were exposed for up to 4 days to gentamicin concentrations of up to 3 mM. Apoptosis developed, almost linearly, with time and drug concentration, and was (i) preventable within the time-frame of the experiments by overexpression of the anti-apoptotic protein Bcl-2, and by co-incubation with cycloheximide (MDKC but not LLC-PK(1) cells); (ii) associated with an increased activity of caspases (MDCK cells; bcl-2 transfectants showed no increase of caspase activities and Z-VAD.fmk afforded full protection). Gentamicin-induced apoptosis also developed to a similar extent in embryonic fibroblasts cultured under the same conditions. In the 3 cell types, apoptosis (measured after 4 days) was directly correlated with cell gentamicin content (apoptotic index [approximately 10 to 18% of TUNEL (+) cells for a content of 20 microg of gentamicin/mg protein; kidney cortex of rats showing apoptosis in proximal tubule epithelium typically contains approximately 10 microg of gentamicin/mg protein). Thus, gentamicin has an intrinsic capability of inducing apoptosis in eucaryotic cells. Development of apoptosis in proximal tubules of kidney cortex in vivo after gentamicin systemic administration is therefore probably related to its capacity to concentrate in this epithelium after systemic administration

    Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels

    No full text
    This article reports the development of an optical imaging technique, confocal light absorption and scattering spectroscopic (CLASS) microscopy, capable of noninvasively determining the dimensions and other physical properties of single subcellular organelles. CLASS microscopy combines the principles of light-scattering spectroscopy (LSS) with confocal microscopy. LSS is an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index, and shape. The multispectral nature of LSS enables it to measure internal cell structures much smaller than the diffraction limit without damaging the cell or requiring exogenous markers, which could affect cell function. Scanning the confocal volume across the sample creates an image. CLASS microscopy approaches the accuracy of electron microscopy but is nondestructive and does not require the contrast agents common to optical microscopy. It provides unique capabilities to study functions of viable cells, which are beyond the capabilities of other techniques

    Apoptosis Contributes to Amphotericin B- Induced Nephrotoxicity

    No full text
    The aim of this study was to investigate whether apoptosis contributes to nephrotoxicity caused by amphotericin B (AmB). By detecting apoptosis-specific DNA fragmentation, it is demonstrated that proximal tubular cells (LLC-PK(1)) and medullary interstitial cells (RMIC) respond with programmed cell death when treated with therapeutic doses of AmB. Concomitant application of AmB and recombinant human insulin-like growth factor-1 (rhIGF-1), a known antiapoptotic agent, abrogated apoptosis in vitro. To validate that the observed apoptotic effects on renal tissue culture cells are applicable to an in vivo setting, an animal model was used for verification. Therefore, Sprague-Dawley rats were treated with AmB. The drug caused hypokalemia, decreased weight gain, loss of renal concentrating ability, and dehydration in a dose-dependent fashion. Microscopic examination of renal tissue sections revealed apoptotic alterations predominantly in proximal and distal tubular epithelial cells. To verify that the observed clinical side effects were linked to apoptosis, rhIGF-1 was applied concomitantly with AmB. In all animals, rhIGF-1 prevented the above-mentioned clinical side effects. Moreover, significantly reduced apoptosis was observed in renal tissue sections of these animals, indicating the relevance of apoptosis in nephrotoxicity. This is the first report to demonstrate that AmB induces apoptosis in the rat kidney in a dose-dependent fashion. The incidence of apoptosis correlates with renal toxicity and can be abrogated by concomitant treatment with rhIGF-1
    corecore