40 research outputs found
Optimized sampling conditions for fecal volatile organic compounds analysis by means of field asymmetric ion mobility spectrometry
Background Fecal volatile organic compounds (VOCs) are increasingly considered as potential non-invasive, diagnostic biomarkers for various gastrointestinal diseases. Knowledge of influence of sampling conditions on VOC outcomes is limited. We aimed to evaluate effects of sampling conditions on fecal VOC profiles and to assess under which conditions an optimal diagnostic accuracy in the discrimination between pediatric inflammatory bowel disease (IBD) and controls could be obtained. Methods Fecal samples from de novo treatment-naĂŻve pediatric IBD patients and healthy controls (HC) were used to assess effects of sampling conditions compared to the standard operating procedure (reference standard), defined as 500mg of sample mass, diluted with 10mL tap water, using field asymmetric ion mobility spectrometry (FAIMS). Results A total of 17 IBD (15CD and 2 UC) and 25 HC were included. IBD and HC could be discriminated with high accuracy (accuracy=0.93, AUC=0.99, p<0.0001). Smaller fecal sample mass resulted in a decreased diagnostic accuracy (300mg accuracy=0.77; AUC=0.69, p=0.02; 100mg accuracy=0.70, AUC=0.74, p=0.003). A loss of diagnostic accuracy was seen towards increased numbers of thaw-freeze cycles (one cycle: accuracy=0.61, AUC=0.80, p=0.0004, two cycles: accuracy=0.64, AUC=0.56, p=0.753, three cycles: accuracy=0.57, AUC=0.50, p=0.5101) and when samples were kept at room temperature for 180 minutes prior to analysis (accuracy=0.60, AUC=0.51, p=0.46). Diagnostic accuracy of VOC profiles was not significantly influenced by storage duration differences of 20 months. Conclusion Application of 500mg sample mass analyzed after one thaw-freeze cycle, showed best discriminative accuracy for differentiation of IBD and HC. VOC profiles and diagnostic accuracy were significantly affected by sampling conditions, underlining the need for implementation of standardized protocols in fecal VOC analysis
Simultaneous assessment of urinary and fecal volatile organic compound analysis in De Novo Pediatric IBD
Endoscopic evaluation is mandatory in establishing the diagnosis of pediatric inflammatory bowel disease (IBD), but unfortunately carries a high burden on patients. Volatile organic compounds (VOC) have been proposed as alternative, noninvasive diagnostic biomarkers for IBD. The current study aimed to assess and compare the potential of fecal and urinary VOC as diagnostic biomarkers for pediatric IBD in an intention-to-diagnose cohort. In this cohort study, patients aged 4–17 years, referred to the outpatient clinic of a tertiary referral center under suspicion of IBD, were eligible to participate. The diagnosis was established by endoscopic and histopathologic assessment, participants who did not meet the criteria of IBD were allocated to the control group. Participants were instructed to concurrently collect a fecal and urinary sample prior to bowel lavage. Samples were analyzed by means of gas chromatography–ion mobility spectrometry. In total, five ulcerative colitis patients, five Crohn’s disease patients, and ten age and gender matched controls were included. A significant difference was demonstrated for both fecal (p-value, area under the curve; 0.038, 0.73) and urinary (0.028, 0.78) VOC profiles between IBD and controls. Analysis of both fecal and urinary VOC behold equal potential as noninvasive biomarkers for pediatric IBD diagnosis
Profound Pathogen-Specific Alterations in Intestinal Microbiota Composition Precede Late-Onset Sepsis in Preterm Infants:A Longitudinal, Multicenter, Case-Control Study
BACKGROUND: The role of intestinal microbiota in the pathogenesis of late-onset sepsis (LOS) in preterm infants is largely unexplored but could provide opportunities for microbiota-targeted preventive and therapeutic strategies. We hypothesized that microbiota composition changes before the onset of sepsis, with causative bacteria that are isolated later in blood culture. METHODS: This multicenter case-control study included preterm infants born under 30 weeks of gestation. Fecal samples collected from the 5 days preceding LOS diagnosis were analyzed using a molecular microbiota detection technique. LOS cases were subdivided into 3 groups: gram-negative, gram-positive, and coagulase-negative Staphylococci (CoNS). RESULTS: Forty LOS cases and 40 matched controls were included. In gram-negative LOS, the causative pathogen could be identified in at least 1 of the fecal samples collected 3 days prior to LOS onset in all cases, whereas in all matched controls, this pathogen was absent (P = .015). The abundance of these pathogens increased from 3 days before clinical onset. In gram-negative and gram-positive LOS (except CoNS) combined, the causative pathogen could be identified in at least 1 fecal sample collected 3 days prior to LOS onset in 92% of the fecal samples, whereas these pathogens were present in 33% of the control samples (P = .004). Overall, LOS (expect CoNS) could be predicted 1 day prior to clinical onset with an area under the curve of 0.78. CONCLUSIONS: Profound preclinical microbial alterations underline that gut microbiota is involved in the pathogenesis of LOS and has the potential as an early noninvasive biomarker
Detection of spontaneous preterm birth by maternal urinary volatile organic compound analysis : a prospective cohort study
Accurate prediction of preterm birth is currently challenging, resulting in unnecessary maternal hospital admittance and fetal overexposure to antenatal corticosteroids. Novel biomarkers like volatile organic compounds (VOCs) hold potential for predictive, bed-side clinical applicability. In a proof of principle study, we aimed to assess the predictive potential of urinary volatile organic compounds in the identification of pregnant women at risk for preterm birth. Urine samples of women with a high risk for preterm birth (≧24 + 0 until 36 + 6 weeks) were collected prospectively and analyzed for VOCs using gas chromatography coupled with an ion mobility spectrometer (GS-IMS). Urinary VOCs of women delivering preterm were compared with urine samples of women with suspicion of preterm birth collected at the same gestation period but delivering at term. Additionally, the results were also interpreted in combination with patient characteristics, such as physical examination at admission, microbial cultures, and placental pathology. In our cohort, we found that urinary VOCs of women admitted for imminent preterm birth were not significantly different in the overall group of women delivering preterm vs. term. However, urinary VOCs of women admitted for imminent preterm birth and delivering between 28 + 0 until 36 + 6 weeks compared to women with a high risk for preterm birth during the same gestation period and eventually delivering at term (>37 + 0 weeks) differed significantly (area under the curve: 0.70). In addition, based on the same urinary VOCs, we could identify women with a confirmed chorioamnionitis (area under the curve: 0.72) and urinary tract infection (area under the curve: 0.97). In conclusion, urinary VOCs hold potential for non-invasive, bedside prediction of preterm birth and on the spot identification of intra-uterine infection and urinary tract infections. We suggest these observations are further explored in larger populations
Effect of Daily Intake of Lactobacillus casei on Microbial Diversity and Dynamics in a Healthy Pediatric Population
Emerging evidence exists that an altered gut microbiota is a key factor in the pathophysiology of a variety of diseases. Consequently, microbiota-targeted interventions, including administration of probiotics, have increasingly been evaluated. Mechanisms on how probiotics contribute to homeostasis or reverse (effects of) dysbiosis remain yet to be elucidated. In the current study, we assessed the effects of daily Lactobacillus casei strain Shirota (LcS) ingestion in healthy children aged from 12–18 years on gut microbiota compositional diversity and stability. Results were compared to healthy children without LcS exposure. For a period of 6 weeks, fecal samples were collected weekly by both groups. In total, 18 children were included (6 probiotics; 12 non-probiotics). At 1-week intervals, no differences in diversity and stability were observed in children exposed to LcS versus controls. LcS ingestion by healthy children does not result in a more diverse and stable gut microbiota composition. Large double-blind placebo-controlled randomized clinical trials in children should be performed to gain more insight on potential beneficial health consequences
Application of fecal volatile organic compound analysis in clinical practice: Current state and future perspectives
Increasing interest is noticed in the potential of volatile organic compound (VOC) analysis as non-invasive diagnostic biomarker in clinical medical practice. The spectrum of VOCs, originating from (patho)physiological metabolic processes in the human body and detectable in bodily excrements, such as exhaled breath, urine and feces, harbors a magnificent source of information. Thus far, the majority of studies have focused on VOC analysis in exhaled breath, aiming at identification of disease-specific VOC profiles. Recently, an increasing number of studies have evaluated the usability of VOC present in the headspace of feces in the diagnostic work-up of a wide range of gastrointestinal diseases. Promising results have been demonstrated particularly in those diseases in which microbiota alterations are considered to play a significant etiological role, such as colorectal carcinoma, inflammatory bowel disease, irritable bowel syndrome, celiac disease and infectious bowel diseases. In addition, fecal VOC analysis seems to have potential as a diagnostic biomarker for extra-intestinal diseases, including bronchopulmonary dysplasia and sepsis. Different methods for VOC analysis have been used in medical studies, such as gas-chromatography mass spectrometry, selected-ion flow tube-mass spectrometry, ion-mobility spectrometry, and electronic nose devices. In this review, the available literature on the potential of fecal VOCs as diagnostic biomarker, including an overview of relevant VOC detection techniques, is discussed. In addition, future hurdles, which need to be taken prior to implementation of VOC analysis in daily clinical practice, are outlined
Fecal volatile organic compounds in preterm infants are influenced by enteral feeding composition
Fecal volatile organic compound (VOC) analysis has shown great potential as a noninvasive diagnostic biomarker for a variety of diseases. Before clinical implementation, the factors influencing the outcome of VOC analysis need to be assessed. Recent studies found that the sampling conditions can influence the outcome of VOC analysis. However, the dietary influences remains unknown, especially in (preterm) infants. Therefore, we assessed the effects of feeding composition on fecal VOC patterns of preterm infants (born at 75% breastmilk (BM) feeding and (2) daily intake >75% formula milk (FM) feeding. Fecal samples, which were collected at 7, 14 and 21 days postnatally, were analyzed by an electronic nose device (Cyranose 320®). In total, 30 preterm infants were included (15 FM, 15 BM). No differences in the fecal VOC patterns were observed at the three predefined time-points. Combining the fecal VOC profiles of these time-points resulted in a statistically significant difference between the two subgroups although this discriminative accuracy was only modest (AUC [95% CI]; p-value; sensitivity; and specificity of 0.64 [0.51–0.77]; 0.04; 68%; and 51%, respectively). Our results suggest that the influence of enteral feeding on the outcome of fecal VOC analysis cannot be ignored in this population. Furthermore, in both subgroups, the fecal VOC patterns showed a stable longitudinal course within the first month of life