17 research outputs found

    An Alternative Pathway of Imiquimod-Induced Psoriasis-Like Skin Inflammation in the Absence of Interleukin-17 Receptor A Signaling

    Get PDF
    Topical application of imiquimod (IMQ) on the skin of mice induces inflammation with common features found in psoriatic skin. Recently, it was postulated that IL-17 has an important role both in psoriasis and in the IMQ model. To further investigate the impact of IL-17RA signaling in psoriasis, we generated IL-17 receptor A (IL-17RA)–deficient mice (IL-17RAdel) and challenged these mice with IMQ. Interestingly, the disease was only partially reduced and delayed but not abolished when compared with controls. In the absence of IL-17RA, we found persisting signs of inflammation such as neutrophil and macrophage infiltration within the skin. Surprisingly, already in the naive state, the skin of IL-17RAdel mice contained significantly elevated numbers of Th17- and IL-17-producing γδ T cells, assuming that IL-17RA signaling regulates the population size of Th17 and γδ T cells. Upon IMQ treatment of IL-17RAdel mice, these cells secreted elevated amounts of tumor necrosis factor-α, IL-6, and IL-22, accompanied by increased levels of the chemokine CXCL2, suggesting an alternative pathway of neutrophil and macrophage skin infiltration. Hence, our findings have major implications in the potential long-term treatment of psoriasis by IL-17-targeting drugs

    Exercise reduces systemic immune inflammation index (SII) in childhood cancer patients

    No full text
    While exercise and physical activity have been suggested to reduce mortality and symptoms in cancer, knowledge on these associations in patients with childhood cancer (CCPs) is sparse. Anti-inflammatory properties of exercise might mediate these beneficial effects. We investigated the influence of exercise on the inflammation markers neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and systemic-immune-inflammation index (SII) and associations to patient-reported-outcomes in CCPs in a randomized-controlled trial. Results show associations between inflammation markers and patient-reported outcomes. Compared to the control group, SII was significantly reduced following exercise (p=0.036). Anti-inflammatory effects of exercise are also present in CCPs and may underlie exercise-induced benefits on symptoms. Clinical Trial Registration Number: NCT02612025

    Evidence of K+ homeostasis disruption in cellular dysfunction triggered by 7-ketocholesterol, 24S-hydroxycholesterol, and tetracosanoic acid (C24:0) in 158N murine oligodendrocytes

    No full text
    International audienceImbalance in the homeostasis of K+ ions has been reported to contribute to the pathogenesis of neurodegenerative diseases. 7-ketocholesterol (7KC), 24S-hydroxycholesterol (24S-OHC), and tetracosanoic acid (C24:0), often found at increased levels in patients with Alzheimer's disease, Multiple Sclerosis and X-ALD, are able to trigger numerous nerve cell dysfunctions. We therefore studied the impact of 7KC, 24S-OHC, and C24:0 on 158N murine oligodendrocytes, and determined their impact on K+ homeostasis. The effects of 7KC, 24S-OHC and C24:0 on lipid membrane organization and membrane potential were examined with merocyanine 540 (MC540) and bis-(1,3-diethylthiobarbituric acid) trimethine oxonol (DiSBAC2(3)), respectively. The intracellular concentration of K+ ([K+]i) was measured by flame photometry and the ratiometric approach using the PBFI-AM fluorescence indicator. To determine the relationships between [K+]i and lipotoxicity, 158N cells were pre-treated with a universal Kv channels blocker, 4-aminopyridine (4-AP), without or with 7KC, 24S-OHC or C24:0. Cell adhesion, cell growth, mitochondrial depolarization, cytoplasmic membrane integrity, the presence of SubG1 and the morphological aspect of the nuclei were determined with various microscopy, flow cytometry and biochemistry methods. 7KC, 24S-OHC and C24:0 induced changes in lipid content and polarization of the cytoplasmic membrane. These events were associated with increased [K+]i. Blocking Kv channels with 4-AP exacerbated 7KC-, 24S-OHC- and C24:0-induced cell dysfunction. 4-AP exacerbated loss of cell adhesion and cell growth inhibition, amplified mitochondrial depolarization and cytoplasmic membrane damage, and increased the percentage of SubG1 cells. The positive correlation between [K+]i and cell death supports the potential involvement of K+ in 7KC-, 24S-OHC-, and C24:0-induced cytotoxicity

    Benefits of Exercise Training for Children and Adolescents Undergoing Cancer Treatment: Results From the Randomized Controlled MUCKI Trial

    No full text
    Objective:In cancer patients, the impairment in muscle function is a frequently observed phenomenon. However, comprehensive evaluation of the effect of exercise training on muscle function in childhood cancer patients (CCPs) is sparse and therefore investigated in the MUCKI trial. Study Design:In the randomized controlled MUCKI trial, CCPs during intensive cancer treatment and aged 4-18 years were recruited. Eligible patients were enrolled soon after diagnosis as long as they were physically and mentally able to participate in exercise testing and training. Patients of the exercise group (n= 16) participated in average 2.7 +/- 1.2 times per week in a combined resistance and endurance training with moderate exercise intensity, for a time period of 8.0 +/- 2.1 weeks, while patients of the control group (n= 17) received usual care. Leg strength was evaluated as the primary endpoint. Secondary endpoints were 6-min walk performance, arm strength, body composition, fatigue, and health-related quality of life. Results:Comparisons of pre- and post-intervention results were evaluated by baseline and stratification criteria adjusted analysis and showed positive effects for the exercise group regarding leg strength [F-(1,F- 20)= 5.733;p= 0.027*;eta p2= 0.223], walking performance [F-(1,F- 25)= 4.270;p= 0.049*;eta p2= 0.146], fatigue [F-(1,F- 13)= 8.353;p= 0.013*;eta p2= 0.391], self-esteem [F-(1,F- 6)= 6.823;p= 0.040*;eta p2= 0.532], and self-reported strength and endurance capacity [F-(1,F- 6)= 6.273;p= 0.046*;eta p2= 0.511]. No significant differences were found for the other parameters. Conclusion:Within one of the first randomized controlled trials, the present study provides evidence for a positive effect of combined training in CCPs during intensive cancer treatment. Further research is needed to confirm these results and to evaluate their clinical impact

    Analysis of RBP expression and binding sites identifies PTBP1 as a regulator of CD19 expression in B-ALL

    No full text
    ABSTRACTDespite massive improvements in the treatment of B-ALL through CART-19 immunotherapy, a large number of patients suffer a relapse due to loss of the targeted epitope. Mutations in the CD19 locus and aberrant splicing events are known to account for the absence of surface antigen. However, early molecular determinants suggesting therapy resistance as well as the time point when first signs of epitope loss appear to be detectable are not enlightened so far. By deep sequencing of the CD19 locus, we identified a blast-specific 2-nucleotide deletion in intron 2 that exists in 35% of B-ALL samples at initial diagnosis. This deletion overlaps with the binding site of RNA binding proteins (RBPs) including PTBP1 and might thereby affect CD19 splicing. Moreover, we could identify a number of other RBPs that are predicted to bind to the CD19 locus being deregulated in leukemic blasts, including NONO. Their expression is highly heterogeneous across B-ALL molecular subtypes as shown by analyzing 706 B-ALL samples accessed via the St. Jude Cloud. Mechanistically, we show that downregulation of PTBP1, but not of NONO, in 697 cells reduces CD19 total protein by increasing intron 2 retention. Isoform analysis in patient samples revealed that blasts, at diagnosis, express increased amounts of CD19 intron 2 retention compared to normal B cells. Our data suggest that loss of RBP functionality by mutations altering their binding motifs or by deregulated expression might harbor the potential for the disease-associated accumulation of therapy-resistant CD19 isoforms

    Glucosylceramide Synthase Inhibitors Induce Ceramide Accumulation and Sensitize H3K27 Mutant Diffuse Midline Glioma to Irradiation

    No full text
    H3K27M mutant (mut) diffuse midline glioma (DMG) is a lethal cancer with no effective cure. The glycosphingolipids (GSL) metabolism is altered in these tumors and could be exploited to develop new therapies. We tested the effect of the glucosylceramide synthase inhibitors (GSI) miglustat and eliglustat on cell proliferation, alone or in combination with temozolomide or ionizing radiation. Miglustat was included in the therapy protocol of two pediatric patients. The effect of H3.3K27 trimethylation on GSL composition was analyzed in ependymoma. GSI reduced the expression of the ganglioside GD2 in a concentration and time-dependent manner and increased the expression of ceramide, ceramide 1-phosphate, sphingosine, and sphingomyelin but not of sphingosine 1-phosphate. Miglustat significantly increased the efficacy of irradiation. Treatment with miglustat according to dose recommendations for patients with Niemann–Pick disease was well tolerated with manageable toxicities. One patient showed a mixed response. In ependymoma, a high concentration of GD2 was found only in the presence of the loss of H3.3K27 trimethylation. In conclusion, treatment with miglustat and, in general, targeting GSL metabolism may offer a new therapeutic opportunity and can be administered in close proximity to radiation therapy. Alterations in H3K27 could be useful to identify patients with a deregulated GSL metabolism

    Next-generation sequencing reveals germline mutations in an infant with synchronous occurrence of nephro- and neuroblastoma

    No full text
    <p>Although neuro- and nephroblastoma are common solid tumors in children, the simultaneous occurrence is very rare and is often associated with syndromes. Here, we present a unique case of synchronous occurrence of neuro- and nephroblastoma in an infant with no signs of congenital anomalies or a syndrome. We performed genetic testing for possible candidate genes as underlying mutation using the next-generation sequencing (NGS) approach to target 94 genes and 284 single-nucleotide polymorphisms (SNPs) involved in cancer. We uncovered a novel heterozygous germline missense mutation p.F58L (c.172T→C) in the anaplastic lymphoma kinase (<i>ALK</i>) gene and one novel heterozygous rearrangement Q418Hfs<sup>*</sup>11 (c.1254_1264delins TTACTTAGTACAAGAACTG) in the Fanconi anemia gene <i>FANCD2</i> leading to a truncated protein. Besides, several SNPs associated with the occurrence of neuroblastoma and/or nephroblastoma or multiple primary tumors were identified. The next-generation sequencing approach might in the future be useful not only in understanding tumor etiology but also in recognizing new genetic markers and targets for future personalized therapy.</p
    corecore