16 research outputs found

    The marine plastic litter issue: a social-economic analysis

    Get PDF
    The issue of marine plastic litter pollution is multifaceted, cross-sectoral, and ongoing in the absence of appropriate management measures. This study analysed the issue of marine plastic litter pollution in the context of the Descriptor 10 of the Marine Strategy Framework Directive and Good Environmental Status of the oceans and seas. The Driver-Pressure-State-Impact-Response (DPSIR) framework was used to assess the causes, e ects, and management measures to changes in the marine environment resulting from marine plastics pollution. We noted that less than 10 peer-reviewed publications have applied the Driver-Pressure-State-Impact-Response (DPSIR) model to the issue of marine plastics pollution. Some basic needs such as food security, movement of goods and services, and shelter are also some of the major drivers of marine plastic pollution. The use of plastics is linked to multiple economic sectors (fisheries, agriculture, transport, packaging, construction) and other human activities. A significant amount of the resulting pressures came from the economic sectors for packaging and construction. State changes occurred at the environmental (contamination and bioaccumulation), ecosystem (ingestion of plastics, ghost fishing) and ecosystem service levels (supply of sea food, salt and cultural benefits), with possible loss of jobs and income being some of the observed impacts on human welfare. Responses as management measures, which are tailored to meet each component of the DPSIR framework, were identified. These included policies, regulations, technological advancement and behavioural change. The research acknowledges the issue of marine plastics pollution as a global environmental problem and recommends a trans-disciplinary approach, involving all types of stakeholders. Future research and analysis applying the DPSIR framework will be useful to provide the information necessary for the e ective, adaptive management of litter pollution by marine plastics.PLASTICSEA- Impact of Microplastics in the Ocean, Sea Salt and Aquaculture FA-06-2017-0046; FCT: UI/MAR/00350/2020:info:eu-repo/semantics/publishedVersio

    Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: a review

    Get PDF
    Coastal and marine management require the evaluation of multiple environmental threats and issues. However, there are gaps in the necessary data and poor access or dissemination of existing data in many countries around the world. This research identifies how remote sensing can contribute to filling these gaps so that environmental agencies, such as the United Nations Environmental Programme, European Environmental Agency, and International Union for Conservation of Nature, can better implement environmental directives in a cost-e ective manner. Remote sensing (RS) techniques generally allow for uniform data collection, with common acquisition and reporting methods, across large areas. Furthermore, these datasets are sometimes open-source, mainly when governments finance satellite missions. Some of these data can be used in holistic, coastal and marine environmental management frameworks, such as the DAPSI(W)R(M) framework (Drivers–Activities–Pressures–State changes–Impacts (on Welfare)–Responses (as Measures), an updated version of Drivers–Pressures–State–Impact–Responses. The framework is a useful and holistic problem-structuring framework that can be used to assess the causes, consequences, and responses to change in the marine environment. Six broad classifications of remote data collection technologies are reviewed for their potential contribution to integrated marine management, including Satellite-based Remote Sensing, Aerial Remote Sensing, Unmanned Aerial Vehicles, Unmanned Surface Vehicles, Unmanned Underwater Vehicles, and Static Sensors. A significant outcome of this study is practical inputs into each component of the DAPSI(W)R(M) framework. The RS applications are not expected to be all-inclusive; rather, they provide insight into the current use of the framework as a foundation for developing further holistic resource technologies for management strategies in the future. A significant outcome of this research will deliver practical insights for integrated coastal and marine management and demonstrate the usefulness of RS to support the implementation of environmental goals, descriptors, targets, and policies, such as theWater Framework Directive, Marine Strategy Framework Directive, Ocean Health Index, and United Nations Sustainable Development Goals. Additionally, the opportunities and challenges of these technologies are discussed.Murray Foundation: 25.26022020info:eu-repo/semantics/publishedVersio

    Social-environmental analysis for the management of coastal lagoons in North Africa

    Get PDF
    This study provides an overview of 11 lagoons in North Africa, from the Atlantic to the Eastern Mediterranean. Lagoons are complex, transitional, coastal zones providing valuable ecosystem services that contribute to the welfare of the human population. The main economic sectors in the lagoons included fishing, shellfish harvesting, and salt and sand extraction, as well as maritime transport. Economic sectors in the areas around the lagoons and in the watershed included agriculture, tourism, recreation, industrial, and urban development. Changes were also identified in land use from reclamation, changes in hydrology, changes in sedimentology from damming, inlet modifications, and coastal engineering. The human activities in and around the lagoons exert multiple pressures on these ecosystems and result in changes in the environment, affecting salinity, dissolved oxygen, and erosion; changes in the ecology, such as loss of biodiversity; and changes in the delivery of valuable ecosystem services. Loss of ecosystem services such as coastal protection and seafood affect human populations that live around the lagoons and depend on them for their livelihood. Adaptive management frameworks for social–ecological systems provide options that support decision makers with sciencebased knowledge to deliver sustainable development for ecosystems. The framework used to support the decision makers for environmental management of these 11 lagoons is Drivers–Activities–Pressures–State Change–Impact (on Welfare)–Responses (as Measures).info:eu-repo/semantics/publishedVersio

    Stakeholders’ Interaction in Water Management System: Insights from a MACTOR Analysis in the R’Dom Sub-basin, Morocco

    Get PDF
    This paper aims to examine the stakeholders' interaction in the water management system at the R'Dom Sub-basin (Morocco). For this purpose, The MACTOR participatory approach was implemented to involve all key water stakeholders and to analyze their interactions. The action system was characterized by the analysis of related water issues and relevant actors on the ground. Thus, ten actors and twelve objectives were identified and assessed in this study. The analysis of stakeholder role allowed to identify the typology of stakeholders according to their strategic objectives and to evaluate their power, influence and dependence, as well as their convergence in a global water cycle management. The results show a significant level of convergence among stakeholders, despite the existence of certain stakeholders who may be considered autonomous, given their low involvement in integrated water management. Furthermore, there was a limited involvement of stakeholders in certain strategic objectives such as capacity building, technical means, and awareness-raising actions. The paper shows the need to generate greater collaborative efforts among water stakeholders involved in the implementation of integrated water resources management in the R'Dom sub-basin.info:eu-repo/semantics/publishedVersio

    Mapping the pollution plume using the self-potential geophysical method: case of Oum Azza Landfill, Rabat, Morocco

    Get PDF
    The main landfill in the city of Rabat (Morocco) is based on sandy material containing the shallow Mio-Pliocene aquifer. The presence of a pollution plume is likely, but its extent is not known. Measurements of spontaneous potential (SP) from the soil surface were cross-referenced with direct measurements of the water table and leachates (pH, redox potential, electrical conductivity) according to the available accesses, as well as with an analysis of the landscape and the water table flows. With a few precautions during data acquisition on this resistive terrain, the results made it possible to separate the electrokinetic (~30%) and electrochemical (~70%) components responsible for the range of potentials observed (70 mV). The plume is detected in the hydrogeological downstream of the discharge, but is captured by the natural drainage network and does not extend further under the hills.info:eu-repo/semantics/publishedVersio

    Contribution of Remote Sensing Technologies to a Holistic Coastal and Marine Environmental Management Framework: A Review

    No full text
    Coastal and marine management require the evaluation of multiple environmental threats and issues. However, there are gaps in the necessary data and poor access or dissemination of existing data in many countries around the world. This research identifies how remote sensing can contribute to filling these gaps so that environmental agencies, such as the United Nations Environmental Programme, European Environmental Agency, and International Union for Conservation of Nature, can better implement environmental directives in a cost-effective manner. Remote sensing (RS) techniques generally allow for uniform data collection, with common acquisition and reporting methods, across large areas. Furthermore, these datasets are sometimes open-source, mainly when governments finance satellite missions. Some of these data can be used in holistic, coastal and marine environmental management frameworks, such as the DAPSI(W)R(M) framework (Drivers–Activities–Pressures–State changes–Impacts (on Welfare)–Responses (as Measures), an updated version of Drivers–Pressures–State–Impact–Responses. The framework is a useful and holistic problem-structuring framework that can be used to assess the causes, consequences, and responses to change in the marine environment. Six broad classifications of remote data collection technologies are reviewed for their potential contribution to integrated marine management, including Satellite-based Remote Sensing, Aerial Remote Sensing, Unmanned Aerial Vehicles, Unmanned Surface Vehicles, Unmanned Underwater Vehicles, and Static Sensors. A significant outcome of this study is practical inputs into each component of the DAPSI(W)R(M) framework. The RS applications are not expected to be all-inclusive; rather, they provide insight into the current use of the framework as a foundation for developing further holistic resource technologies for management strategies in the future. A significant outcome of this research will deliver practical insights for integrated coastal and marine management and demonstrate the usefulness of RS to support the implementation of environmental goals, descriptors, targets, and policies, such as the Water Framework Directive, Marine Strategy Framework Directive, Ocean Health Index, and United Nations Sustainable Development Goals. Additionally, the opportunities and challenges of these technologies are discussed

    Socio-ecological analysis of artisanal gold mining in West Africa: a case study of Ghana

    No full text
    The surge in artisanal gold mining (AGM) activities and the associated environmental impact in Ghana have elicited several stakeholders' attempts to curb the problem. However, due to little understanding of the underlying issues, these efforts have been ineffective. This study aims to use a socio-ecological framework to analyze drivers of AGM activities, the environmental pressures, the state change, their impact on human welfare, and the management response as measures (DAPSI(W)R(M)) to the problem. Evaluate AGM's impact on Ghana's ability to achieve the United Nations Sustainable Development Goals (SDGs). Data were collected from relevant literature on the subject and analyzed with the DAPSI(W) R(M) framework. Esteem needs, food, acceptance and friendship, and self-actualization are the main drivers of AGM activities leading to environmental pressures, including abrasion, extraction of living and non-living resources, the introduction of non-synthetic compounds, among others. State changes of the environment resulting from the pressures generated by human activities were changes in the land and forest cover (1.13%), topography (hills turned into flatland and undulating), and biota. Due to the state in the environment, water quality and availability, agriculture food production, fish yield, food safety, spiritual and cultural loss, death, injury, and health of gold miners and other stakeholders have been affected

    KPCA over PCA to assess urban resilience to floods

    No full text
    Global increases in the occurrence and frequency of flood have highlighted the need for resilience approaches to deal with future floods. The principal component analysis (PCA) has been used widely to understand the resilience of the urban system to floods. Based on feature extraction and dimensionality reduction, the PCA reduces datasets to representations consisting of principal components. Kernel PCA (KPCA) is the nonlinear form of PCA, which efficiently presents a complicated data in a lower dimensional space. In this work the KPCA techniques was applied to measure and map flood resilience across a local level. Therefore, it aims to improve the performance achieved by non-linear PCA application, compared to standard PCA. Twenty-one resilience indicators were gathered, including social, economic, physical, and natural components into a composite index (Flood resilience Index). The experimental results demonstrate the KPCA performance to get a better Flood Resilience Index, guiding q decision making to strengthen the flood resilience in our case of study of M’diq-Fnideq and martil municipalities in Northern of Morocco
    corecore