2,130 research outputs found

    Computationally driven discovery of SARS-CoV-2 M pro inhibitors: From design to experimental validation

    Get PDF
    We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (

    Hydrogen-Poor Disks in Compact X-Ray Binaries

    Full text link
    We show that accretion disks in several compact X-ray binaries with hydrogen-depleted donors are likely subject to a thermal ionization instability, unless they are strongly irradiated. These disks are particularly interesting in that their MHD-turbulent properties in the neutral phase may be quite different from those of standard, hydrogen-rich disks.Comment: 10 pages, accepted for publication in ApJ

    ELN and FBN2 gene variants as risk factors for two sports-related musculoskeletal injuries

    Get PDF
    The proteins ELN and FBN2 are important in extracellular matrix function. The ELN rs2071307 and FBN2 rs331079 gene variants have been associated with soft tissue pathologies. We aimed to determine whether these variants were predisposing factors for both Achilles tendinopathy (AT) and anterior cruciate ligament (ACL) ruptures. For the AT study, 135 cases (TEN group) and 239 asymptomatic controls were recruited. For the ACL rupture study our cohort consisted of 141 cases (ACL group) and 219 controls. Samples were genotyped for both the ELN rs2071307 and FBN2 rs331079 variants using TaqMan assays. Analysis of variance and chi-squared tests were used to determine whether either variant was associated with AT or ACL rupture with significance set at p<0.05. The GG genotype of the FBN2 variant was significantly over-represented within the TEN group (p=0.035; OR=1.83; 95% CI 1.04–3.25) compared to the CON group. We also found that the frequency of the G allele was significantly different between the TEN (p=0.017; OR=1.90; 95% CI 1.11–3.27) and ACL groups (p=0.047; OR=1.76; 95% CI 1.00–3.10) compared to controls. The ELN rs207137 variant was not associated with either AT or ACL rupture. In conclusion, DNA sequence variation within the FBN2 gene is associated with both AT and ACL rupture

    Resonant Inelastic X-ray Scattering of Methyl Chloride at the Chlorine K Edge

    Full text link
    We present a combined experimental and theoretical study of isolated CH3Cl molecules using resonant inelastic x-ray scattering (RIXS). The high-resolution spectra allow extraction of information about nuclear dynamics in the core-excited molecule. Polarization-resolved RIXS spectra exhibit linear dichroism in the spin-orbit intensities, a result interpreted as due to chemical environment and singlet-triplet exchange in the molecular core levels. From analysis of the polarization-resolved data, Cl 2px, y and 2pz electronic populations can be determined

    Thomson-resonant Interference Effects in Elastic X-ray Scattering Near the Cl K Edge of HCl

    Full text link
    We experimentally observed interference effects in elastic x-ray scattering from gas-phase HCl in the vicinity of the Cl K edge. Comparison to theory identifies these effects as interference effects between non-resonant elastic Thomson scattering and resonant Raman scattering. The results indicate the non-resonant Thomson and resonant Raman contributions are of comparable strength. The measurements also exhibit strong polarization dependence, allowing an easy identification of the resonant and non-resonant contributions

    CD36 Mediates the Innate Host Response to β-Amyloid

    Get PDF
    Accumulation of inflammatory microglia in Alzheimer's senile plaques is a hallmark of the innate response to β-amyloid fibrils and can initiate and propagate neurodegeneration characteristic of Alzheimer's disease (AD). The molecular mechanism whereby fibrillar β-amyloid activates the inflammatory response has not been elucidated. CD36, a class B scavenger receptor, is expressed on microglia in normal and AD brains and binds to β-amyloid fibrils in vitro. We report here that microglia and macrophages, isolated from CD36 null mice, had marked reductions in fibrillar β-amyloid–induced secretion of cytokines, chemokines, and reactive oxygen species. Intraperitoneal and stereotaxic intracerebral injection of fibrillar β-amyloid in CD36 null mice induced significantly less macrophage and microglial recruitment into the peritoneum and brain, respectively, than in wild-type mice. Our data reveal that CD36, a major pattern recognition receptor, mediates microglial and macrophage response to β-amyloid, and imply that CD36 plays a key role in the proinflammatory events associated with AD

    Segond's fracture: a biomechanical cadaveric study using navigation

    Get PDF
    Background Segond’s fracture is a well-recognised radiological sign of an anterior cruciate ligament (ACL) tear. While previous studies evaluated the role of the anterolateral ligament (ALL) and complex injuries on rotational stability of the knee, there are no studies on the biomechanical effect of Segond’s fracture in an ACL deficient knee. The aim of this study was to evaluate the effect of a Segond’s fracture on knee rotation stability as evaluated by a navigation system in an ACL deficient knee. Materials and methods Three different conditions were tested on seven knee specimens: intact knee, ACL deficient knee and ACL deficient knee with Segond’s fracture. Static and dynamic measurements of anterior tibial translation (ATT) and axial tibial rotation (ATR) were recorded by the navigation system (2.2 OrthoPilot ACL navigation system B. Braun Aesculap, Tuttlingen, Germany). Results Static measurements at 30 showed that the mean ATT at 30 of knee flexion was 5.1 ± 2.7 mm in the ACL intact condition, 14.3 ± 3.1 mm after ACL cut (P = 0.005), and 15.2 ± 3.6 mm after Segond’s fracture (P = 0.08). The mean ATR at 30 of knee flexion was 20.7 ± 4.8 in the ACL intact condition, 26.9 ± 4.1 in the ACL deficient knee (P[0.05) and 30.9 ± 3.8 after Segond’s fracture (P = 0.005). Dynamic measurements during the pivot-shift showed that the mean ATT was 7.2 ± 2.7 mm in the intact knee, 9.1 ± 3.3 mm in the ACL deficient knee(P = 0.04) and 9.7 ± 4.3 mm in the ACL deficient knee with Segond’s fracture (P = 0.07). The mean ATR was 9.6 ± 1.8 in the intact knee, 12.3 ± 2.3 in the ACL deficient knee (P[0.05) and 19.1 ± 3.1 in the ACL deficient knee with Segond’s lesion (P = 0.016). Conclusion An isolated lesion of the ACL only affects ATT during static and dynamic measurements, while the addition of Segond’s fracture has a significant effect on ATR in both static and dynamic execution of the pivot-shift test, as evaluated with the aid of navigation
    • …
    corecore