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ELN and FBN2 gene variants as risk factors for two sports related musculoskeletal 1 

injuries 2 

Abstract 3 

The ELN and FBN2 proteins are important in extracellular matrix function. The ELN 4 

rs2071307 and FBN2 rs331079 gene variants have been associated with soft tissue 5 

pathologies. We aimed to determine whether these variants were predisposing factors for 6 

both Achilles tendinopathy (AT) and anterior cruciate ligament (ACL) ruptures. 7 

For the AT study, 135 cases (TEN group) and 239 asymptomatic controls were recruited.  8 

For the ACL rupture study our cohort consisted of 141 cases (ACL group) and 219 controls. 9 

Samples were genotyped for both the ELN rs2071307 and FBN2 rs331079 variants using 10 

TaqMan assays. Analysis of variance and chi-squared tests were used to determine whether 11 

either variant was associated with AT or ACL rupture with significance set at p<0.05. 12 

The GG genotype of the FBN2 variant was significantly over-represented within the TEN 13 

group (p=0.035; OR=1.83; 95% CI 1.04–3.25) compared to the CON group. We also found 14 

that the frequency of the G allele was significantly different between the TEN (p=0.017; 15 

OR=1.90; 95% CI 1.11–3.27) and ACL groups (p=0.047; OR=1.76; 95% CI 1.00–3.10) 16 

compared to controls. The ELN rs207137 variant was not associated with either AT or ACL 17 

rupture. In conclusion, DNA sequence variation within the FBN2 gene is associated with both 18 

AT and ACL rupture. 19 

Keywords Gene; Achilles Tendinopathy; Tendon rupture; Ligament rupture; Injury 20 

prevention. 21 

22 
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Introduction 23 

Injury to the Achilles tendon and the anterior cruciate ligament are severe traumas typically 24 

sustained during sports activities. Achilles tendon injuries, including chronic Achilles 25 

tendinopathy (AT) and acute Achilles tendon rupture, are prevalent within athletic populations 26 

[26]. Indeed, the lifetime incidence of AT is approximately 10% in the general population and 27 

as high as 50% within competitive runners [12]. Chronic AT may be due, in part, to excessive 28 

exposure of the Achilles tendon to acute or repetitive mechanical loading forces experienced 29 

during exercise [15]. Anterior cruciate ligament (ACL) ruptures have low lifetime prevalence 30 

in the general population but have been reported to be nearly 80% among netball players [7]. 31 

The most common mechanism of ACL rupture involves a sudden change in an athlete’s 32 

direction or rapid deceleration [19]. Both AT and ACL ruptures are complex multifactorial 33 

phenotypes with several intrinsic and extrinsic risk factors. However, the exact aetiology is 34 

not yet fully understood [3]. 35 

Among the intrinsic risk factors, several genetic sequence variants have been shown to 36 

increase the risk (predispose individuals) to AT and ACL ruptures. Variants within the TNC 37 

[3], MMP3 [29], GDF5 [23] and TIMP2 genes [5] are associated with the risk of AT. 38 

Furthermore, variants within the COL1A1 [22] and COL12A1 genes [24] have also been 39 

associated with ACL ruptures. Interestingly, a variant within the COL5A1 gene was found to 40 

be associated with both AT [16] and ACL ruptures [25]. These findings show that both 41 

chronic AT and ACL ruptures have a partial polygenic basis where complex interactions 42 

between genes and the environment are likely to exacerbate the risk of both types of injuries 43 

[3]. All the genes described above encode proteins with either a structural or regulatory role 44 

in maintaining the homeostasis of the soft tissue extracellular matrix (ECM). Therefore, it is 45 

fair to assume that other genes, which code for additional regulatory components of the ECM 46 

might also be candidates for AT and ACL rupture.  47 
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Elastin (ELN) is an insoluble polymer composed of several tropoelastin molecules covalently 48 

bound to each other by cross-links [31]. ELN proteins contribute to tendon and ligament 49 

elasticity by allowing them to stretch and return to their original state. These proteins have an 50 

important load-bearing role in musculoskeletal tissues and are expressed in places where 51 

mechanical energy is stored [8]. The ELN rs2071307 gene variant has been shown to be 52 

associated with other multifactorial conditions of the extracellular matrix, such as aortic 53 

stenosis [6] and aortic aneurysm [33]. Interestingly, the ELN rs2071307 variant is located 54 

within exon 20 of the gene and is a non-synonymous SNP. It is predicted to be deleterious 55 

(Queen’s University. http://compbio.cs.queensu.ca/F-SNP/) since it substitutes a hydrophobic 56 

amino acid glycine with a hydrophilic serine residue (National Center for Biotechnology 57 

Information. http://www.ncbi.nlm.nih.gov/projects/SNP/). This substitution may disrupt the 58 

integrity of the microfibrils rendering them more prone to damage [18] and therefore this 59 

variant may predispose to soft tissue damage during sports performance. 60 

Fibrillins are large glycoproteins present in the extracellular matrix of tendons and ligaments 61 

[2]. Both fibrillin-1 (FBN-1) and fibrillin-2 (FBN-2) share high amino acid homology and are 62 

involved in providing strength and flexibility to various soft tissues. FBN-2 is abundant in 63 

elastic tissues, such as tendons and ligaments [35] where it plays an important role in the 64 

assembly of elastic fibres [2]. Mutations within the FBN2 gene are known to associate with 65 

musculoskeletal pathologies such as congenital contractural arachnodactyly [9]. 66 

Furthermore, the rs331079 variant located within intron 7 of the gene (University of Florida. 67 

www.snpper.chip.org) has previously been associated with intracranial aneurysms [32]. 68 

As both the FBN2 rs331079 and the ELN rs2071307 variants associate with other conditions 69 

related to the extracellular matrix we considered them as possible risk determinants for both 70 

AT and ACL rupture.  Accordingly, the aim of this study was to test that hypothesis. 71 

72 

http://compbio.cs.queensu.ca/F-SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.snpper.chip.org/
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Material and Methods 73 

One hundred and thirty five (60 Australian (AUS) and 75 South African (SA)) Caucasian 74 

participants with Achilles tendinopathy (TEN group) were recruited to this study from the 75 

Musculoskeletal Research Centre at La Trobe University in Melbourne, and from the Medical 76 

Practice at the Sports Science Institute of South Africa. Furthermore, 239 (143 AUS and 96 77 

SA) asymptomatic Caucasian controls (CON groups) were recruited to this study from 78 

recreational sports clubs within the Melbourne area in Australia, and within the Cape Town 79 

area in South Africa. Chronic AT was clinically diagnosed as described by Mokone et al.[17] 80 

in the first manuscript describing the South African AT cohort. The Australian cohort used the 81 

same clinical diagnosis described by Mokone et al. In addition, diagnosis was confirmed with 82 

soft tissue ultrasound examination in all the AUS and 40 of 75 SA participants. In addition, 83 

141 South African Caucasian participants with surgically diagnosed ACL ruptures (ACL 84 

group) and 219 apparently healthy (CON group), unrelated, physically active, gender 85 

matched South African Caucasian participants without any self-reported history of ligament 86 

or tendon injury were recruited for this study as previously described [22]. Seventy four 87 

participants sustained the injury through a non-contact mechanism and were analysed as a 88 

separate subgroup (NON subgroup).  89 

Previous injury data was used as inclusion criteria in the various cohorts analysed. In the 90 

AUS Achilles cohort, the CON group had no history of any tendon injury, whereas in the SA 91 

Achilles cohort, the CON group merely had no previous history of Achilles tendon injuries. In 92 

the case of ACL rupture, the first ACL rupture was documented as the specific inclusion 93 

injury. Therefore, by definition, no participant in the ACL group had a previous ACL rupture  94 

None of the participants included in this study had symptoms or signs  of Ehlers-Danlos 95 

syndrome (EDS), hypermobility or benign hypermobility joint syndrome or other monogenic 96 

connective tissue disorders when their medical examinations were reviewed by the medical 97 

practitioner [16,17,34]. 98 
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Physical activity data was recorded for the South African Achilles tendinopathy cohort (SA 99 

CON and SA TEN), but not for the Australian Achilles tendinopathy cohort (AUS CON and 100 

AUS TEN). In addition physical activity data was also recorded for the South African ACL 101 

cohort (SA ACL and SA CON). The data recorded for the SA CON and SA TEN groups 102 

included total years participated in running and high impact sports, as well as hours per week 103 

of participation in the last 2 years. The data reported for the ACL cohort included years of 104 

participation in contact sports, non-contact jumping sports, non-contact non-jumping sports 105 

and skiing sports, .Data were collected as previously described [16, 25].  106 

Based on our earlier work, this study had a large enough sample size to detect associations 107 

with an OR of 2.0 at p<0.05 with 80% power [28]. All participants gave informed written 108 

consent, in accordance with the journal’s recommendations [10,11], and all completed a 109 

medical and injury history questionnaire. Ethical approval was obtained from the Research 110 

Ethics Committees at the University of Cape Town, South Africa, La Trobe University, 111 

Australia, Monash University, Australia and the University of Northampton, United Kingdom 112 

prior to initiating this work. 113 

For the Australian cohort, DNA was extracted from whole blood using Qiagen DNA extraction 114 

kits (Flexigene DNA kit, Qiagen P/L, Valencia, California, USA) as per the manufacturer’s 115 

recommendations. DNA from the South African individuals was extracted from blood using 116 

the method described by Lahiri and Nurnberg [14] and modified by Mokone et. al. [16,17]. 117 

Upon extraction, DNA was frozen at -20 °C for long-term storage, and smaller aliquots were 118 

stored at 4 °C for short term usage. 119 

DNA from all participants was genotyped for the FBN2 rs331079 and ELN rs2071307 gene 120 

variants using fluorescence-based TaqMan assays (Applied Biosystems, Foster City, CA, 121 

USA). PCR reactions contained allele-specific probes and primers in a PCR mastermix 122 

containing AmpliTaq DNA Polymerase Gold (Applied Biosystems, Foster City, CA, USA) in a 123 

total reaction volume of 12 μL. PCR was performed on an Applied Biosystems 124 
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StepOnePlusTM real-time PCR system (Applied Biosystems, Foster City, CA, USA). 125 

Genotypes were called according to output clustering profiles using Applied Biosystems 126 

StepOnePlusTM real-time PCR software Version 2.1 (Applied Biosystems, Foster City, CA, 127 

USA). Rox was used as a passive reference to normalise fluorescence signal intensity 128 

relative to the amount of sample used. 129 

The statistical power of the study was determined using Quanto v1.2 130 

(http://hydra.usc.edu/gxe). The initial calculations were done using a recessive model and a 131 

disease population prevalence of 10%. Assuming a risk allele frequency of 60%, a matched 132 

case-control population of 136 individuals per group was adequate to detect an allelic OR of 133 

2.0 at a power of 80% and a significance level of 5%. 134 

Data were analysed using SPSS Version 20 (SPSS Science Inc, Chicago, Ill, USA) statistical 135 

program. A one-way analysis of variance was used to establish if any significant difference 136 

existed between the characteristics of the TEN and CON groups within the Australian and 137 

South African cohorts as well as between the ACL rupture and CON groups.  A chi-squared 138 

(2) analysis or Fisher’s exact test was used to determine if significance differences existed 139 

between genotype and/or allele frequencies, as well as other categorical data between the 140 

groups. In all analysis significance was accepted when p<0.05. Adjustments for multiple 141 

testing were not conducted as it has been previously described [21] that no appropriate 142 

method exists. Furthermore, the Bonferroni adjustment was considered too conservative [21] 143 

and inappropriate for a situation like this where there is prior evidence that the gene of 144 

interest is associated with a trait [20]. Hardy-Weinberg equilibrium was determined using the 145 

program Genepop web version 3.4 (Curtin University. http://genepop.curtin.edu.au/). 146 

147 

http://hydra.usc.edu/gxe
http://genepop.curtin.edu.au/
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Results 148 

Running was the predominant sporting activity resulting in Achilles tendon injuries (63.1%, 149 

N=65) in the SA cohort. The SA groups were matched for the mean number of years 150 

participating in running (CON, 8.7 ± 8.2 yrs, n=95; TEN, 10.0 ± 11.0 yrs, n=62; p=0.402). 151 

However, there was a significant difference in hours of training between the two groups 152 

(CON, 3.6 ± 3.0 hrs/week, n=91; TEN, 2.4 ± 2.7 hrs/week, n=55; p=0.011), where the SA 153 

CON group trained for more hours per week. The SA TEN participants participated in more 154 

years of high impact sports compared to the SA CON group in the past (CON, 9.4 ± 8.4 yrs, 155 

n=95; TEN, 13.1 ± 11.1 yrs, n=62; p=0.018), however, the SA CON group performed a 156 

greater amount of high impact sports during the last 2 years (CON, 3.6 ± 3.1 yrs, n=95; TEN, 157 

2.5 ± 12.9 yrs, N=62; p=0.029. Although all AUS participants were physically active 158 

individuals, the type of sporting activity involved in, the hours of training and the frequency of 159 

activity were not recorded. 160 

The SA ACL and SA CON groups were matched for years of participation in contact sports 161 

(SA CON, 11.7 ± 7.1 yrs, n=219; SA ACL, 11.5 ± 8.0 yrs, n=141; p=0.892), non-contact 162 

jumping sports (SA CON, 27.8 ± 19.9 yrs, n=190; SA ACL, 25.7 ± 22.6 yrs, n=141; p=0.398), 163 

non-contact non-jumping sports (SA CON, 11.5 ± 7.1 yrs, n=219; SA ACL, 10.5 ± 8.5 yrs, 164 

n=141; p=0.575), and skiing sports (SA CON, 19.1 ± 16.9 yrs, n=219; SA ACL, 8.6 ± 8.5 yrs, 165 

n=141; p=0.094). 166 

Since the ELN rs2071307 and FBN2 rs331079 allele and genotype frequencies in both of the 167 

South African (SA) and Australian (AUS) TEN and CON groups were similar (Supplementary 168 

table 1), the data was collectively analysed. The CON and TEN groups were similarly 169 

matched for age and gender (Table 1).  When co-varied for sex, the two groups were 170 

similarly matched for height. Furthermore, when co-varied for sex and age at recruitment, the 171 

TEN group was found to be significantly heavier (p<0.001) with larger BMIs (p<0.001) (Table 172 

1). The TEN group was recruited on average 5.1 years after the initial injury. 173 
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Participants in the AUS TEN group carrying the ELN rs2071307 AA (53.1 ± 11.6, n=10) 174 

genotype were significantly (p=0.005) older when they reported their initial Achilles tendon 175 

injury when compared to those with a GG (37.2 ± 12.6, n=16) or GA (37.8 ± 13.6, n=32) 176 

genotype. There were, however, no significant differences in the mean ages of the three 177 

genotype groups in the CON AUS group (GG: 40.7 ± 11.8, n=48; GA: 37.4 ± 12.2, n=68; AA: 178 

40.1 ± 12.1, n=24; p=0.323). There were no other significant genotype effects of either 179 

variants with respect to height, weight, BMI, or sex in the AT group (data not shown). 180 

Furthermore, the investigated variants did not show any interaction with age, height, weight, 181 

BMI and sex in the ACL population (data not shown).   182 

The genotype frequency distributions of the FBN2 rs331079 and the ELN rs2071307 variants 183 

within the AT and the ACL rupture groups are shown in table 2. In the combined TEN cohort, 184 

the FBN2 rs331079 genotype frequency was significantly different (p=0.035) between the 185 

CON (GG, 76.9%; GC + CC, 23.1%) and TEN (GG, 85.9%; GC + CC, 14.1%) groups (Table 186 

2). The GG genotype was significantly over-represented within the TEN group (p=0.035; 187 

OR=1.83; 95% CI 1.04 – 3.25). We also found a significant (p=0.017; OR=1.90; 95% CI 1.11 188 

– 3.27) allele frequency distribution difference for the FBN2 rs331079 variant between the 189 

CON (G, 87.4%; C, 12.6%) and TEN (G, 93.0%; C, 7.0%) groups (Table 2). Similarly, we 190 

also found a significant (p=0.047; OR=1.76; 95% CI 1.00 – 3.10) allele frequency distribution 191 

difference of the rs331079 locus between the CON (G, 89.3%; C, 10.7) and ACL (G, 93.6%; 192 

C, 6.4%) groups. Also, in the AT population, there were no significant ELN rs2071307 193 

genotype (p=0.795) or allelic (p=0.741) frequency differences between the CON and TEN 194 

groups (Table 2). 195 

Although not significant, we found a tendency towards an allelic (p=0.064) association for the 196 

ELN rs2071307 variant and a tendency towards a genotypic (p=0.075; p=0.112) association 197 

between the CON and ACL groups for the FBN2 rs331079 and ELN rs2071307 variants 198 

respectively. There were no genotypic or allelic associations between the CON and NON 199 
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subgroup. Furthermore, these gene variants did not show any significant distribution 200 

difference when participants were grouped into genders (data not shown).   201 

Discussion 202 

We have shown that the FBN2 rs331079 variant is significantly associated with the risk of 203 

both AT and ACL rupture. Specifically, the GG genotype was over-represented in 204 

participants with chronic AT and the G allele was over-represented in both pathologies. 205 

Therefore, it appears that individuals carrying the G allele or the GG genotype are 206 

approximately twice as likely to develop either of the two injuries. Interestingly this same 207 

variant has recently been shown to associate with intracranial aneurysms in a Dutch 208 

population [32]. However, in the Dutch study it was the C allele that was found to be the risk 209 

factor as opposed to the G allele. It is noteworthy that FBN2 mRNA levels have been shown 210 

to be elevated in rat Achilles tendon undergoing repair with expression of FBN2 reported to 211 

be increased for ten days post injury [13]. Similarly, an increase in the expression of FBN2 212 

has been found in other pathologies such as mitral valve prolapse [27]. 213 

ELN and FBN-2 are known to form a network of microfibrils that maintains the tendon 214 

architecture [31]. An increase in FBN-2 levels might be expected to increase the density of 215 

the tendon and lead to an increase in tendon stiffness and rigidity possibly affecting the 216 

compliance of the tendon to muscle movement [4]. On the other hand, a decrease in FBN-2 217 

levels could result in weaker tendons caused by structural deficiencies in the microfibril 218 

network [30]. Impairment of the function of FBN-2 is believed to be a major determinant of 219 

microfibrillopathy [30] which is speculated to precede a tendinopathy. Furthermore, the 220 

increase in FBN2 expression levels observed during tendon repair [13] is consistent with an 221 

important role for FBN-2 in maintaining the tendon’s architectural integrity.  222 

Mutations such as the G3532T and G3590A substitutions have been found within the FBN2 223 

gene that lead to the development of connective tissue disorders such as congenital 224 

contractural arachnodactyly [9].  The rs331079 variant that we investigated in this study 225 



 

10 

 

resides within an intronic region of the FBN2 gene (University of Florida. 226 

www.snpper.chip.org).  Although intronic variants do not determine the primary sequence of 227 

a protein molecule [1], they may have other, hitherto, undiscovered roles that are necessary 228 

for appropriate expression of protein molecules. However, at present the functionality of this 229 

variant has not been described and therefore we do not know why it predisposes individuals 230 

to AT and ACL rupture. The rs331079 variant is known to be part of a linkage block in 231 

Caucasians and is in high linkage disequilibrium (D'=1) with the FBN2 rs331081, rs331082, 232 

and rs331085 variants (Wellcome Trust Sanger Institute. www.ensembl.com). All three of 233 

these additional variants are also located within intron 7 of the FBN2 gene (University of 234 

Florida. www.snpper.chip.org). The linkage disequilibrium between the rs331079 variant that 235 

we investigated and rs331081, rs331082, and rs331085 means that it is conceivable that one 236 

of these linked variants may also have a role in predisposing to AT or ACL. 237 

Our data do not support an association between the ELN rs2071307 variant and either AT or 238 

ACL ruptures. It is interesting to note however, that although we found no relationship 239 

between this variant and either pathology; the rs2071307 SNP is a non-synonymous and 240 

possibly deleterious polymorphism (Queen’s University. http://compbio.cs.queensu.ca/F-241 

SNP/) which results in a change of amino acid from hydrophobic glycine to hydrophilic serine 242 

(University of Florida. www.snpper.chip.org). It is possible of course, that other variants 243 

within this gene may be associated with either AT or ACL ruptures.  244 

Although our study found a significant association between the FBN2 rs331079 G allele and 245 

the risk of AT and ACL rupture, the work has some limitations.  Firstly, although our SA 246 

cohorts (both TEN and ACL rupture groups) were matched for some aspects of physical 247 

activity there were some differences in training behaviour and previous exposure to high 248 

impact sports for the TEN cohort.. Secondly, we did not have detailed information on sports 249 

history for the Australian cohort. Levels of physical activity should be accurately documented 250 

in future studies.Furthermore, although the study was sufficiently powered to detect 251 

associations with relatively large effects it should be repeated in bigger cohorts. Likewise, 252 

http://www.snpper.chip.org/
http://www.ensembl.com/
http://www.snpper.chip.org/
http://compbio.cs.queensu.ca/F-SNP/
http://compbio.cs.queensu.ca/F-SNP/
http://www.snpper.chip.org/
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additional association studies should be carried out in populations of different ethnicities 253 

showing different minor allele frequencies for the rs331079 (African, 3%; European, 10%; ad-254 

mixed American, 28%; East Asian, 7%) and the rs2071307 (African, 26%; European, 39%; 255 

ad-mixed American, 30%; East Asian, 14%) variants (1000 Genomes Project, 256 

www.1000genomes.org). 257 

Finally, the findings from this study advance our understanding of the polygenic basis of 258 

musculoskeletal injuries. We suggest that the FBN2 rs331079 variant should be considered 259 

as an additional genetic locus to include in an injury risk assessment model that might be 260 

used to identify athletes who are predisposed to AT and ACL ruptures.   261 

262 

http://www.1000genomes.org/
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List of legends 359 

Table 1: General characteristics of the Achilles tendinopathy group (TEN), the anterior 360 

cruciate ligament rupture group (ACL), and the ACL subgroup with the non-contact (NON) 361 

mechanism of injury as well as their respective control groups. 362 

Table 2: The genotype and allele frequency distribution of the two selected candidate 363 

variants within the Achilles tendinopathy (TEN), ACL ruptures (ACL) and their respective 364 

asymptomatic control (CON) groups. 365 
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