16 research outputs found

    Epidemiology and clinical features of gastroenteritis in hospitalised children: prospective survey during a 2-year period in a Parisian hospital, France

    Get PDF
    International audienceRotavirus is recognised as the most important agent of severe acute gastroenteritis (AGE) in young children. In a 2-year prospective survey, we investigated the epidemiology and clinical features of the viral and bacterial pathogens in children hospitalised for AGE. The study was performed in a Parisian teaching hospital from November 2001 to May 2004. Clinical data were prospectively collected to assess the gastroenteritis severity (20-point Vesikari severity score, the need for intravenous rehydration, duration of hospitalisation). Stools were systematically tested for group A rotavirus, norovirus, astrovirus and adenovirus 40/41, sapovirus and Aichi virus and enteropathogenic bacteria. A total of 457 children (mean age 15.9 months) were enrolled. Viruses were detected in 305 cases (66.7%) and bacteria in 31 cases (6.8%). Rotaviruses were the most frequent pathogen (48.8%), followed by noroviruses (8.3%) and adenoviruses, astroviruses, Aichi viruses and sapoviruses in 3.5%, 1.5%, 0.9% and 0.4%, respectively. Cases of rotavirus gastroenteritis were significantly more severe than those of norovirus with respect to the Vesikari score, duration of hospitalisation and the need for intravenous rehydration. Rotaviruses were the most frequent and most severe cause in children hospitalised for AGE, and noroviruses also account for a large number of cases in this population

    Viral Etiology of Influenza-Like Illnesses in Antananarivo, Madagascar, July 2008 to June 2009

    Get PDF
    In Madagascar, despite an influenza surveillance established since 1978, little is known about the etiology and prevalence of viruses other than influenza causing influenza-like illnesses (ILIs).From July 2008 to June 2009, we collected respiratory specimens from patients who presented ILIs symptoms in public and private clinics in Antananarivo (the capital city of Madagascar). ILIs were defined as body temperature ≄38°C and cough and at least two of the following symptoms: sore throat, rhinorrhea, headache and muscular pain, for a maximum duration of 3 days. We screened these specimens using five multiplex real time Reverse Transcription and/or Polymerase Chain Reaction assays for detection of 14 respiratory viruses. We detected respiratory viruses in 235/313 (75.1%) samples. Overall influenza virus A (27.3%) was the most common virus followed by rhinovirus (24.8%), RSV (21.2%), adenovirus (6.1%), coronavirus OC43 (6.1%), influenza virus B (3.9%), parainfluenza virus-3 (2.9%), and parainfluenza virus-1 (2.3%). Co-infections occurred in 29.4% (69/235) of infected patients and rhinovirus was the most detected virus (27.5%). Children under 5 years were more likely to have one or more detectable virus associated with their ILI. In this age group, compared to those ≄5 years, the risk of detecting more than one virus was higher (OR = 1.9), as was the risk of detecting of RSV (OR = 10.1) and adenovirus (OR = 4.7). While rhinovirus and adenovirus infections occurred year round, RSV, influenza virus A and coronavirus OC43 had defined period of circulation.In our study, we found that respiratory viruses play an important role in ILIs in the Malagasy community, particularly in children under 5 years old. These data provide a better understanding of the viral etiology of outpatients with ILI and describe for the first time importance of these viruses in different age group and their period of circulation

    The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells

    Get PDF
    2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH(CH)NH)(CHNH)PbI perovskite cells with different numbers of [PbI] sheets (n = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements

    Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells

    Get PDF
    The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pin-type perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V) of the complete cell to ~1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V (1.17 V) and record fill factor (>81%)

    Unexpected substitution of dominant rotavirus G genotypes in French hospitalized children over five consecutive seasons

    No full text
    International audienceThe study was designed to evaluate the circulation of group A rotaviruses in French hospitalized children, and to detect unusual strains. This prospective study was conducted from 2001 to 2006 in children consulting for acute diarrhea at the pediatric emergency department in three French University Hospitals. The rotaviruses were detected by rapid test and genotyped by RT-PCR on the basis of their outer capsid proteins VP4 (P-type) and VP7 (G-type). The stools from 757 children were analyzed. G1P[8] strains were predominant (44.0%), followed by G9P[8] (17.7%), G3P[8] 13.1%, G4P[8] (9.5%), and G2P[4] (1.8%); mixed rotavirus infections occurred in 2.3%. G9 rotaviruses emerged during the 2004-2005 season (73.4%) and remained the second most prevalent strains. Few unusual strains, G6, G8, G12 and P[6]-types, were detected. The monitoring of rotavirus infections should be maintained to document strain distribution and to assess the emergence of new reassortants that may not respond to current rotavirus vaccines

    Contactless and Spatially Resolved Determination of Current−Voltage Curves in Perovskite Solar Cells via Photoluminescence

    No full text
    Early prediction of spatially resolved performance of perovskite solar cells (PSCs) is essential for process monitoring, control and fault diagnosis, and upscaling of this emerging technology. Herein, a fast, nonde structive, contactless imaging-based approach is developed to visualize the spatial distribution of possible light current density−voltage (pseudo-J−V) curves on finished and partly finished cells. This allows for the extraction of other critical spatially resolved properties including implied open-circuit voltage and pseudo-fill factor. The technique is applied to systematically investigate various degradation behaviors on PSCs including thermal stability, light soaking, and ambient air exposure. Finally, it is used to predict pseudo-J−V curves of various perovskite films with different compositions. These results demonstrate the significant value of this fast imaging technique for the research and development of PSCs ranging from material selection, process optimization, to degradation study.This work was supported by the Australian Renewable Energy Agency (ARENA) through research grants RND017 and 2020/RND001. The authors acknowledge the support from the Australian National Fabrication Facility (ANFF), ACT Node, The Australian National University. H.T.N. acknowledges fellowship support from the Australian Centre for Advanced Photovoltaics (ACAP)
    corecore