15 research outputs found

    An approach based on Landsat images for shoreline monitoring to support integrated coastal management - a case study, Ezbet Elborg, Nile Delta, Egypt

    Get PDF
    Monitoring the dynamic behavior of shorelines is an essential factor for integrated coastal management (ICM). In this study, satellite-derived shorelines and corresponding eroded and accreted areas of coastal zones have been calculated and assessed for 15 km along the coasts of Ezbet Elborg, Nile Delta, Egypt. A developed approach is designed based on Landsat satellite images combined with GIS to estimate an accurate shoreline changes and study the effect of seawalls on it. Landsat images for the period from 1985 to 2018 are rectified and classified using Supported Vector Machines (SVMs) and then processed using ArcGIS to estimate the effectiveness of the seawall that was constructed in year 2000. Accuracy assessment results show that the SVMs improve images accuracy up to 92.62% and the detected shoreline by the proposed method is highly correlated (0.87) with RTK-GPS measurements. In addition, the shoreline change analysis presents that a dramatic erosion of 2.1 km2 east of Ezbet Elborg seawall has occurred. Also, the total accretion areas are equal to 4.40 km2 and 10.50 km2 in between 1985-and-2000 and 2000-and-2018, respectively, along the southeast side of the study area

    Secondary metabolites, hormonal homeostasis, and antioxidant enzymes of Moringa oleifera in response to white or violet Light Emitting Diodes (LEDs) combined with cytokinins under tissue culture conditions

    Get PDF
    The present study was carried out between 2021 and 2022 at the tissue culture lab and experimental station of the vegetable and floriculture department, faculty of agriculture, Mansoura University. Using mature seeds, Moringa oleifera is propagated on a large scale and in rapid succession by in vitro culture. Two types of cytokinin: 6-benzylaminopurin (BAP), and thidiauron (TDZ) singly at three different concentrations (0, 1, or 2 mg/L), were used, as well as light-emitting diode systems (LEDs) (white as control and violet; the combination of red and blue; 1:1). After incubation for 30 days, the obtained results showed that the survival percentage increased by the treatments with the maximum value (85%) by MS medium supplemented with 2 mg/L TDZ, under violet LEDs illumination. However, the addition of thidiazuron (TDZ) to the medium did not propagate shoot, and this treatment recorded 100% callus formation other than BAP. The maximum number of axillary shoots per explant and the number of leaves recorded in the MS medium contained 2 mg/L BAP under violet LEDs. Compared to the control values, all the used treatments generally caused surprisingly stimulating the determined antioxidant enzymes and compounds (peroxidase, polyphenol oxidase &catalase and phenols, flavonoids, anthocyanin& ascorbic acid). Concerning the phytohormone content of the hormone-free medium (control), IAA, kinetin, and zeatin increased. Meanwhile, GA3 and ABA decreased with the used treatments

    Conceptual prediction of harbor sedimentation quantities using AI approaches to support integrated coastal structures management

    Get PDF
    Sedimentation is one of the most critical environmental issues facing harbors’ authorities that results in significant maintenance and dredging costs. Thus, it is essential to plan and manage the harbors in harmony with both the environmental and economic aspects to support Integrated Coastal Structures Management (ICSM). Harbors' layout and the permeability of protection structures like breakwaters affect the sediment transport within harbors’ basins. Using a multi-step relational research framework, this study aims to design a novel prediction model for estimating the sedimentation quantities in harbors through a comparative approach based on artificial intelligence (AI) algorithms. First, one hundred simulations for different harbor layouts and various breakwater characteristics were numerically performed using a coastal modeling system (CMS) for generating the dataset to train and validate the proposed AI-based models. Second, three AI approaches namely: Support Vector Regression (SVR), Gaussian Process Regression (GPR), and Artificial Neural Networks (ANN) were developed to predict sedimentation quantities. Third, a comparison between the developed models was conducted using quality assessment criteria to evaluate their performance and choose the best one. Fourth, a sensitivity analysis was performed to provide insights into the factors affecting sedimentation. Lastly, a decision support tool was developed to predict harbors' sedimentation quantities. Results showed that the ANN model outperforms other models with mean absolute percentage error (MAPE) equals 4%. Furthermore, sensitivity analysis demonstrated that the main breakwater inclination angle, porosity, and harbor basin width affect significantly sediment transport. This research makes a significant contribution to the management of coastal structures by developing an AI data-driven framework that is beneficial for harbors' authorities. Ultimately, the developed decision-support AI tool could be used to predict harbors' sedimentation quantities in an easy, cheap, accurate, and practical manner compared to physical modeling which is time-consuming and costly. © 202

    Secondary metabolites, hormonal homeostasis, and antioxidant enzymes of Moringa oleifera in response to white or violet Light Emitting Diodes (LEDs) combined with cytokinins under tissue culture conditions

    Get PDF
    The present study was carried out between 2021 and 2022 at the tissue culture lab and experimental station of the vegetable and floriculture department, faculty of agriculture, Mansoura University. Using mature seeds, Moringa oleifera is propagated on a large scale and in rapid succession by in vitro culture. Two types of cytokinin: 6-benzylaminopurin (BAP), and thidiauron (TDZ) singly at three different concentrations (0, 1, or 2 mg/L), were used, as well as light-emitting diode systems (LEDs) (white as control and violet; the combination of red and blue; 1:1). After incubation for 30 days, the obtained results showed that the survival percentage increased by the treatments with the maximum value (85%) by MS medium supplemented with 2 mg/L TDZ, under violet LEDs illumination. However, the addition of thidiazuron (TDZ) to the medium did not propagate shoot, and this treatment recorded 100% callus formation other than BAP. The maximum number of axillary shoots per explant and the number of leaves recorded in the MS medium contained 2 mg/L BAP under violet LEDs. Compared to the control values, all the used treatments generally caused surprisingly stimulating the determined antioxidant enzymes and compounds (peroxidase, polyphenol oxidase &catalase and phenols, flavonoids, anthocyanin& ascorbic acid). Concerning the phytohormone content of the hormone-free medium (control), IAA, kinetin, and zeatin increased. Meanwhile, GA3 and ABA decreased with the used treatments

    Pre and postharvest characteristics of Dahlia pinnata var. pinnata, cav. As affected by SiO2 and CaCO3 nanoparticles under two different planting dates

    No full text
    Agriculture faces many challenges because of climate changes. The nutrients present in nano-sized form improve plant productivity, especially when used at the appropriate planting time. Field experiments were conducted as a factorial experiment for evaluating two planting dates (20th September and 20th October), foliar application with nanoparticles (NPs) including silica nanoparticles (SiO2-NPs) at 1.5 and 3 mM, calcium carbonate nanoparticles (CaCO3-NPs) at 5 and 10 mM and distilled water (control) on pre- and post-harvest characteristics of Dahlia pinnata var. pinnata Cav. The results indicate that the interactions during the late planting time (20th October) and exogenous applications of SiO2-NPs at 1.5 mM or CaCO3-NPs at 10 mM have improved plant growth including plant height, stem diameter, fresh and dry weights of plant, leaf area, inflorescence diameter, inflorescence stalk length, branches number, tuber numbers, inflorescences number on the plant, and the vase life. At the same time, insignificant differences appeared in the interaction during the planting dates and SiO2 or CaCO3 -NPs concentrations on inflorescence stalk diameter, total soluble solids, membrane stability index, maximum increase in fresh weight (FW), and Si and Ca contents. In addition, all exogenous applications of NPs at the late planting time promoted the plant growth characteristics like lignin %, cellulose %, inflorescence water content, change in FW, and total water uptake. Moreover, the controls through the two planting dates recorded the maximum change in water uptake and water loss values. In short, it can be recommended to use SiO2-NPs at 1.5 mM or CaCO3-NPs at 10 mM as a foliar application at the late planting time (20th October) for obtaining the optimum quantitative and qualitative parameters of D. pinnata

    Anatomical and Physiological Performance of Jojoba Treated with Proline under Salinity Stress Condition

    No full text
    A field trial study was conducted for two consecutive seasons 2020 and 2021 in approximately 8-month-old jojoba plants to evaluate the physiological responses following salt treatment and the role of proline as a foliar application to enhance jojoba tolerance to salinity stress. Jojoba plants were irrigated once a week for four months with diluted seawater in concentrations of 5000, 10,000, and 15,000 ppm and tap water (control). Anti-stress proline was applied four times throughout the experiment, the first at the beginning of the experiment and another three times at 30-day intervals, at concentrations of 0, 300, and 450 ppm. The effect of proline treatments on jojoba plant behavior includes growth vegetative characteristics, namely plant height increase percentage (PHIP), shoot number increase percentage (NSIP), stem diameter increase percentage (SDIP), number of leaves, leaf thickness, leaf area, and fresh and dry weights of leaves, and chemical characteristics, namely chlorophyll a and b, total chlorophyll, carotenoids, leaf mineral contents (N, P, K, Na, and Cl), total phenolic content (TPC), and proline concentration. Moreover, the impacts of proline on hydrogen peroxide (H2O2), superoxide anion (O2•−), malondialdehyde (MDA), and ion leakage (IL) under salinity stress were investigated. Briefly, proline at 450 ppm enhanced all studied growth and physiological characteristics and promoted the antioxidant system of jojoba plants compared with the control and other treatments. The anatomical structure of leaves was also examined, and favorable variations in the anatomical structure were detected in the stressed and proline-treated plants. Exogenous application of proline enhanced most of this anatomical characteristic of jojoba leaf under saline stress. In conclusion, proline as a foliar application at 450 ppm under salinity stress of 10,000 ppm enhances jojoba tolerance to salinity stress by modifying the physicochemical and morphological characteristics of jojoba plants
    corecore