7 research outputs found
Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation
Proteins can be modified by multiple posttranslational modifications (PTMs), creating a PTM code that controls the function of proteins in space and time. Unraveling this complex PTM code is one of the great challenges in molecular biology. Here, using mass spectrometry-based assays, we focus on the most common PTMs-phosphorylation and O-GlcNAcylation-and investigate how they affect each other. We demonstrate two generic crosstalk mechanisms. First, we define a frequently occurring, very specific and stringent phosphorylation/O-GlcNAcylation interplay motif, (pSp/T)P(V/A/T)(gS/gT), whereby phosphorylation strongly inhibits O-GlcNAcylation. Strikingly, this stringent motif is substantially enriched in the human (phospho)proteome, allowing us to predict hundreds of putative O-GlcNAc transferase (OGT) substrates. A set of these we investigate further and show them to be decent substrates of OGT, exhibiting a negative feedback loop when phosphorylated at the P-3 site. Second, we demonstrate that reciprocal crosstalk does not occur at PX(S/T)P sites, i.e., at sites phosphorylated by proline-directed kinases, which represent 40% of all sites in the vertebrate phosphoproteomes
Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation
Proteins can be modified by multiple posttranslational modifications (PTMs), creating a PTM code that controls the function of proteins in space and time. Unraveling this complex PTM code is one of the great challenges in molecular biology. Here, using mass spectrometry-based assays, we focus on the most common PTMs-phosphorylation and O-GlcNAcylation-and investigate how they affect each other. We demonstrate two generic crosstalk mechanisms. First, we define a frequently occurring, very specific and stringent phosphorylation/O-GlcNAcylation interplay motif, (pSp/T)P(V/A/T)(gS/gT), whereby phosphorylation strongly inhibits O-GlcNAcylation. Strikingly, this stringent motif is substantially enriched in the human (phospho)proteome, allowing us to predict hundreds of putative O-GlcNAc transferase (OGT) substrates. A set of these we investigate further and show them to be decent substrates of OGT, exhibiting a negative feedback loop when phosphorylated at the P-3 site. Second, we demonstrate that reciprocal crosstalk does not occur at PX(S/T)P sites, i.e., at sites phosphorylated by proline-directed kinases, which represent 40% of all sites in the vertebrate phosphoproteomes
High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4(+) T cells in human melanoma
Tumor-specific neo-antigens that arise as a consequence of mutations(1,2) are thought to be important for the therapeutic efficacy of cancer immunotherapies(3-5). Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8(+) T cells(3-7), but it is unclear whether neoantigen-specific CD4(+) T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4(+) T-cell responses in tumor control(8-10), we addressed whether neo-antigen-specific CD4(+) T-cell reactivity is a common property in human melanom