809 research outputs found
The Geneva stellar evolution code
This paper presents the Geneva stellar evolution code with special emphasis on the modeling of solar-type stars. The basic input physics used in the Geneva code as well as the modeling of atomic diffusion is first discussed. The physical description of rotation is then presented. Finally, the modeling of magnetic instabilities and transport of angular momentum by internal gravity waves is briefly summarize
Inclusive 2H(3He,t) reaction at 2 GeV
The inclusive 2H(3He,t) reaction has been studied at 2 GeV for energy
transfers up to 500 MeV and scattering angles from 0.25 up to 4 degrees. Data
are well reproduced by a model based on a coupled-channel approach for
describing the NN and N Delta systems. The effect of final state interaction is
important in the low energy part of the spectra. In the delta region, the
cross-section is very sensitive to the effects of Delta-N interaction and Delta
N - NN process. The latter has also a large influence well below the pion
threshold. The calculation underestimates the experimental cross-section
between the quasi-elastic and the delta peaks; this is possibly due to
projectile excitation or purely mesonic exchange currents.Comment: 9 pages, 9 figures, accepted for publication in EPJ
Pre-galactic metal enrichment - The chemical signatures of the first stars
The emergence of the first sources of light at redshifts of z ~ 10-30
signaled the transition from the simple initial state of the Universe to one of
increasing complexity. We review recent progress in our understanding of the
formation of the first stars and galaxies, starting with cosmological initial
conditions, primordial gas cooling, and subsequent collapse and fragmentation.
We emphasize the important open question of how the pristine gas was enriched
with heavy chemical elements in the wake of the first supernovae. We conclude
by discussing how the chemical abundance patterns conceivably allow us to probe
the properties of the first stars and subsequent stellar generations, and allow
us to test models of early metal enrichment.Comment: 52 pages, 20 figures, clarifications, references added, accepted for
publication in the Reviews of Modern Physic
Supernovae from rotating stars
The present paper discusses the main physical effects produced by stellar
rotation on presupernovae, as well as observations which confirm these effects
and their consequences for presupernova models. Rotation critically influences
the mass of the exploding cores, the mass and chemical composition of the
envelopes and the types of supernovae, as well as the properties of the
remnants and the chemical yields. In the formation of gamma-ray bursts,
rotation and the properties of rotating stars appear as the key factor. In
binaries, the interaction between axial rotation and tidal effects often leads
to interesting and unexpected results. Rotation plays a key role in shaping the
evolution and nucleosynthesis in massive stars with very low metallicities
(metallicity below about the Small Magellanic Cloud metallicity down to
Population III stars). At solar and higher metallicities, the effects of
rotation compete with those of stellar winds. In close binaries, the
synchronisation process can lock the star at a high rotation rate despite
strong mass loss and thus both effects, rotation and stellar winds, have a
strong impact. In conclusion, rotation is a key physical ingredient of the
stellar models and of presupernova stages, and the evolution both of single
stars and close binaries. Moreover, important effects are expected along the
whole cosmic history.Comment: 36 pages, 15 figures, published in Handbook of Supernovae, A.W.
Alsabti and P. Murdin (eds), Springe
DNA methylation and differential gene regulation in photoreceptor cell death
Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP
Grids of stellar models with rotation : I. Models from 0.8 to 120 Mâ at solar metallicity (Z = 0.014)
Aims. Many topical astrophysical research areas, such as the properties of planet host stars, the nature of the progenitors of different types of supernovae and gamma ray bursts, and the evolution of galaxies, require complete and homogeneous sets of stellar models at different metallicities in order to be studied during the whole of cosmic history. We present here a first set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way.
Methods. We computed a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z = 0.014, spanning a wide mass range from 0.8 to 120 Mâ. For each of the stellar masses considered, electronic tables provide data for 400 stages along the evolutionary track and at each stage, a set of 43 physical data are given. These grids thus provide an extensive and detailed data basis for comparisons with the observations. The rotating models start on the zero-age main sequence (ZAMS) with a rotation rate Ï
ini/Ï
crit = 0.4. The evolution is computed until the end of the central carbon-burning phase, the early asymptotic giant branch (AGB) phase, or the core helium-flash for, respectively, the massive, intermediate, and both low and very low mass stars. The initial abundances are those deduced by Asplund and collaborators, which best fit the observed abundances of massive stars in the solar neighbourhood. We update both the opacities and nuclear reaction rates, and introduce new prescriptions for the mass-loss rates as stars approach the Eddington and/or the critical velocity. We account for both atomic diffusion and magnetic braking in our low-mass star models.
Results. The present rotating models provide a good description of the average evolution of non-interacting stars. In particular, they reproduce the observed main-sequence width, the positions of the red giant and supergiant stars in the Hertzsprung-Russell (HR) diagram, the observed surface compositions and rotational velocities. Very interestingly, the enhancement of the mass loss during the red-supergiant stage, when the luminosity becomes supra-Eddington in some outer layers, help models above 15-20 Mâ to lose a significant part of their hydrogen envelope and evolve back into the blue part of the HR diagram. This result has interesting consequences for the blue to red supergiant ratio, the minimum mass for stars to become Wolf-Rayet stars, and the maximum initial mass of stars that explode as type II-P supernovae.Facultad de Ciencias AstronĂłmicas y GeofĂsicasInstituto de AstrofĂsica de La Plat
Evolution and Nucleosynthesis of Very Massive Stars
In this chapter, after a brief introduction and overview of stellar
evolution, we discuss the evolution and nucleosynthesis of very massive stars
(VMS: M>100 solar masses) in the context of recent stellar evolution model
calculations. This chapter covers the following aspects: general properties,
evolution of surface properties, late central evolution, and nucleosynthesis
including their dependence on metallicity, mass loss and rotation. Since very
massive stars have very large convective cores during the main-sequence phase,
their evolution is not so much affected by rotational mixing, but more by mass
loss through stellar winds. Their evolution is never far from a homogeneous
evolution even without rotational mixing. All VMS at metallicities close to
solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important
mass loss through stellar winds, these stars may have luminosities during the
advanced phases of their evolution similar to stars with initial masses between
60 and 120 solar masses. A distinctive feature which may be used to disentangle
Wolf-Rayet stars originating from VMS from those originating from lower initial
masses is the enhanced abundances of neon and magnesium at the surface of WC
stars. At solar metallicity, mass loss is so strong that even if a star is born
with several hundred solar masses, it will end its life with less than 50 solar
masses (using current mass loss prescriptions). At the metallicity of the LMC
and lower, on the other hand, mass loss is weaker and might enable star to
undergo pair-instability supernovae.Comment: 42 pages, 20 figures, Book Chapter in "Very Massive Stars in the
Local Universe", Springer, Ed. Jorick S. Vin
Higher Partial Waves in p+p->p+p+eta near Threshold
Exclusive measurements of the production of eta mesons in the p+p->p+p+eta
reaction have been carried out at excess energies of 16 and 37 MeV above
threshold. The deviations from phase space are dominated by the proton-proton
final state interaction and this influences particularly the energy
distribution of the eta meson. However, evidence is also presented at the
higher energy for the existence of an anisotropy in the angular distributions
of the eta meson and also of the final proton-proton pair, probably to be
associated with D-waves in this system interfering with the dominant S-wave
term. The sign of the eta angular anisotropy suggests that rho-exchange is
important for this reaction.Comment: 16 pages, LaTeX2e, 3 EPS Figures, Updated version, Accepted for
publication in Phys. Lett.
Polarisation of the omega meson in the pd-->3He+omega reaction at 1360 and 1450 MeV
The tensor polarisation of omega mesons produced in the pd-->3He+omega
reaction has been studied at two energies near threshold. The 3He nuclei were
detected in coincidence with the pi0pi+pi- or pi0gamma decay products of the
omega. In contrast to the case of phi meson production, the omega mesons are
found to be unpolarised. This brings into question the applicability of the
Okubo-Zweig-Iizuka rule when comparing the production of vector mesons in low
energy hadronic reactions.Comment: 11 pages, 4 figure
A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3
The element abundance ratios of four low-mass stars with extremely low
metallicities indicate that the gas out of which the stars formed was enriched
in each case by at most a few, and potentially only one low-energy, supernova.
Such supernovae yield large quantities of light elements such as carbon but
very little iron. The dominance of low-energy supernovae is surprising, because
it has been expected that the first stars were extremely massive, and that they
disintegrated in pair-instability explosions that would rapidly enrich galaxies
in iron. What has remained unclear is the yield of iron from the first
supernovae, because hitherto no star is unambiguously interpreted as
encapsulating the yield of a single supernova. Here we report the optical
spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an
upper limit of 10^-7.1 times solar abundance). Based on a comparison of its
abundance pattern with those of models, we conclude that the star was seeded
with material from a single supernova with an original mass of ~60 Mo (and that
the supernova left behind a black hole). Taken together with the previously
mentioned low-metallicity stars, we conclude that low-energy supernovae were
common in the early Universe, and that such supernovae yield light element
enrichment with insignificant iron. Reduced stellar feedback both chemically
and mechanically from low-energy supernovae would have enabled first-generation
stars to form over an extended period. We speculate that such stars may perhaps
have had an important role in the epoch of cosmic reionization and the chemical
evolution of early galaxies.Comment: 28 pages, 6 figures, Natur
- âŠ