40 research outputs found
Erythrocyte incorporation of iron by infants: iron bioavailability from a low-iron infant formula and an evaluation of the usefulness of correcting erythrocyte incorporation values, using a reference dose or plasma ferritin concentrations
Bioavailability of iron (Fe) from a low-Fe infant formula was determined by erythrocyte incorporation of 58Fe 14 d after administration in ten healthy, non-Fe-deficient infants. Two feeding protocols were compared, with each infant acting as his/her own control. At 140 and 154 d of age, infants were fed 1000 g of 58Fe-labelled formula (1·44 mg total Fe/1000 g) as six feeds over 24 h (Protocol A) or as two feeds/day on three consecutive days (Protocol B). A water solution with 57Fe and ascorbic acid was given separately as a reference dose in both study protocols. Erythrocyte incorporation of 58Fe and 57Fe was determined by thermal ionisation mass spectrometry. Geometric mean 58Fe incorporation was 7·6 % (range 3·3-13·5 %) with Protocol A as compared to 10·6 % (range 6·7-18·6 %) with Protocol B (P=0·05); paired t test. Inter-individual variability of 58Fe was not reduced by correcting for the incorporation of 57Fe from the reference dose, or by correcting for plasma ferritin concentration. Fractional erythrocyte incorporation of Fe from low-Fe infant formula was in the same range as our earlier published data on erythrocyte incorporation of Fe from human milk extrinsically labelled with 58Fe (). The methodological evaluations included in this study clearly indicate the importance of using standardised study protocols when evaluating Fe bioavailability in infants. Corrections of erythrocyte incorporation data based on plasma ferritin or erythrocyte incorporation of Fe from a reference dose were not found to be usefu
Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants
Infant formulas based on soyabean protein isolate are often used as an alternative to cows'-based formulas. However, the presence of phytic acid in soya formulas has raised concern about the absorption of trace elements and minerals from these products. The aim of the present study was to evaluate mineral and trace element absorption from regular and dephytinised soya formula in healthy infants. Soyabean protein isolate with a relatively low native content of phytic acid was used for production of a regular soya formula (300 mg phytic acid/kg liquid formula) and an experimental formula was based on dephytinised soya protein isolate (<6 mg phytic acid/kg liquid formula). Using a crossover study design, apparent mineral and trace element absorptions were measured by a stable isotope technique based on 72 h faecal excretion of non-absorbed stable isotopes (Zn, Fe, Cu and Ca) and by the chemical balance technique (Mn, Zn, Cu and Ca) in nine infants (69-191 d old). Fe absorption was also measured by erythrocyte incorporation 14 d after intake. The results from the present study demonstrated that Zn absorption, measured by a stable isotope technique, was significantly greater after dephytinisation (mean value 16·7 v. 22·6 %; P=0·03). No other statistically significant differences between the two formulas were observed. The nutritional benefit of dephytinisation was marginal in the present study. Based on these results, the use of soyabean protein isolate with low native content of phytic acid should be promoted for production of soya formulas and adequate addition of ascorbic acid to enhance Fe absorption should be ensured in the product
Tolerance of a standard intact protein formula versus a partially hydrolyzed formula in healthy, term infants
<p>Abstract</p> <p>Background</p> <p>Parents who perceive common infant behaviors as formula intolerance-related often switch formulas without consulting a health professional. Up to one-half of formula-fed infants experience a formula change during the first six months of life.</p> <p>Methods</p> <p>The objective of this study was to assess discontinuance due to study physician-assessed formula intolerance in healthy, term infants. Infants (335) were randomized to receive either a standard intact cow milk protein formula (INTACT) or a partially hydrolyzed cow milk protein formula (PH) in a 60 day non-inferiority trial. Discontinuance due to study physician-assessed formula intolerance was the primary outcome. Secondary outcomes included number of infants who discontinued for any reason, including parent-assessed.</p> <p>Results</p> <p>Formula intolerance between groups (INTACT, 12.3% vs. PH, 13.7%) was similar for infants who completed the study or discontinued due to study physician-assessed formula intolerance. Overall study discontinuance based on parent- vs. study physician-assessed intolerance for all infants (14.4 vs.11.1%) was significantly different (P = 0.001).</p> <p>Conclusion</p> <p>This study demonstrated no difference in infant tolerance of intact vs. partially hydrolyzed cow milk protein formulas for healthy, term infants over a 60-day feeding trial, suggesting nonstandard partially hydrolyzed formulas are not necessary as a first-choice for healthy infants. Parents frequently perceived infant behavior as formula intolerance, paralleling previous reports of unnecessary formula changes.</p> <p>Trial Registration</p> <p>clinicaltrials.gov: NCT00666120</p
Dry Cereals Fortified with Electrolytic Iron or Ferrous Fumarate Are Equally Effective in Breast-fed Infants
Precooked, instant (dry) infant cereals in the US are fortified with electrolytic iron, a source of low reactivity and suspected low bioavailability. Iron from ferrous fumarate is presumed to be more available. In this study, we compared a dry infant rice cereal (Cereal L) fortified with electrolytic iron (54.5 mg iron/100 g cereal) to a similar cereal (Cereal M) fortified with ferrous fumarate (52.2 mg Fe/100 g) for efficacy in maintaining iron status and preventing iron deficiency (ID) in breast-fed infants. Ascorbic acid was included in both cereals. In this prospective, randomized double-blind trial, exclusively breast-fed infants were enrolled at 1 mo and iron status was determined periodically. At 4 mo, 3 infants had ID anemia and were excluded. Ninety-five infants were randomized at 4 mo, and 69 (36 Cereal L, 33 Cereal M) completed the intervention at 9 mo. From 4 to 9 mo, they consumed daily one of the study cereals. With each cereal, 2 infants had mild ID, a prevalence of 4.2%, but no infant developed ID anemia. There were no differences in iron status between study groups. Iron intake from the study cereals was (mean ± SD) 1.21 ± 0.31 mg⋅kg−1⋅d−1 from Cereal L and 1.07 ± 0.40 mg⋅kg−1⋅d−1 from Cereal M. Eleven infants had low birth iron endowment (plasma ferritin < 55 μg/L at 2 mo) and 54% of these infants had ID with or without anemia by 4 mo. We conclude that electrolytic iron and ferrous fumarate were equally efficacious as fortificants of this infant cereal
Iron Stores of Breastfed Infants during the First Year of Life
The birth iron endowment provides iron for growth in the first months of life. We describe the iron endowment under conditions of low dietary iron supply. Subjects were infants participating in a trial of Vitamin D supplementation from 1 to 9 months. Infants were exclusively breastfed at enrollment but could receive complementary foods from 4 months but not formula. Plasma ferritin (PF) and transferrin receptor (TfR) were determined at 1, 2, 4, 5.5, 7.5, 9 and 12 months. At 1 month PF ranged from 38 to 752 µg/L and was only weakly related to maternal PF. PF declined subsequently and flattened out at 5.5 months. PF of females was significantly higher than PF of males except at 12 months. TfR increased with age and was inversely correlated with PF. PF and TfR tracked strongly until 9 months. Iron deficiency (PF < 10 µg/L) began to appear at 4 months and increased in frequency until 9 months. Infants with ID were born with low iron endowment. We concluded that the birth iron endowment is highly variable in size and a small endowment places infants at risk of iron deficiency before 6 months. Boys have smaller iron endowments and are at greater risk of iron deficiency than girls
Iron Stores of Breastfed Infants during the First Year of Life
The birth iron endowment provides iron for growth in the first months of life. We describe the iron endowment under conditions of low dietary iron supply. Subjects were infants participating in a trial of Vitamin D supplementation from 1 to 9 months. Infants were exclusively breastfed at enrollment but could receive complementary foods from 4 months but not formula. Plasma ferritin (PF) and transferrin receptor (TfR) were determined at 1, 2, 4, 5.5, 7.5, 9 and 12 months. At 1 month PF ranged from 38 to 752 µg/L and was only weakly related to maternal PF. PF declined subsequently and flattened out at 5.5 months. PF of females was significantly higher than PF of males except at 12 months. TfR increased with age and was inversely correlated with PF. PF and TfR tracked strongly until 9 months. Iron deficiency (PF < 10 µg/L) began to appear at 4 months and increased in frequency until 9 months. Infants with ID were born with low iron endowment. We concluded that the birth iron endowment is highly variable in size and a small endowment places infants at risk of iron deficiency before 6 months. Boys have smaller iron endowments and are at greater risk of iron deficiency than girls
Erythrocyte incorporation of iron by infants: iron bioavailability from a low-iron infant formula and an evaluation of the usefulness of correcting erythrocyte incorporation values, using a reference dose or plasma ferritin concentrations
ISSN:0007-1145ISSN:1475-266