466 research outputs found

    TYC 2675-663-1: A newly discovered W UMa system in an active state

    Full text link
    The recently discovered eclipsing binary system TYC 2675-663-1 is a X-ray source, and shows properties in the optical that are similar to the W UMa systems, but are somewhat unusual compared to what is seen in other contact binary systems. The goal of this work is to characterize its properties and investigate its nature by means of detailed photometric and spectroscopic observations. We have performed extensive V-band photometric measurements with the INTEGRAL satellite along with ground-based multi-band photometric observations, as well as high-resolution spectroscopic monitoring from which we have measured the radial velocities of the components. These data have been analysed to determine the stellar properties, including the absolute masses and radii. Additional low-resolution spectroscopy was obtained to investigate spectral features. From the measured eclipse timings we determine an orbital period for the binary of P=0.4223576+-0.0000009 days. The light-curve and spectroscopic analyses reveal the observations to be well represented by a model of an overcontact system composed of main-sequence F5 and G7 stars (temperature difference of nearly 1000 K), with the possible presence of a third star. Low-resolution optical spectroscopy reveals a complex H alpha emission, and other features that are not yet understood. The unusually large mass ratio of q=0.81+-0.05 places it in the rare "H" (high mass ratio) subclass of the W UMa systems, which are presumably on their way to coalescence.Comment: 12 pages in double column format. Accepted for publication in Astronomy and Astrophysic

    Aperiodic optical variability of intermediate polars - cataclysmic variables with truncated accretion disks

    Full text link
    We study the power spectra of the variability of seven intermediate polars containing magnetized asynchronous accreting white dwarfs, XSS J00564+4548,IGR J00234+6141, DO Dra, V1223 Sgr, IGR J15094-6649, IGR J16500-3307 and IGR J17195-4100, in the optical band and demonstrate that their variability can be well described by a model based on fluctuations propagating in a truncated accretion disk. The power spectra have breaks at Fourier frequencies, which we associate with the Keplerian frequency of the disk at the boundary of the white dwarfs' magnetospheres. We propose that the properties of the optical power spectra can be used to deduce the geometry of the inner parts of the accretion disk, in particular: 1) truncation radii of the magnetically disrupted accretion disks in intermediate polars, 2) the truncation radii of the accretion disk in quiescent states of dwarf novaeComment: Accepted for publication in A&

    Feedbacks and social tipping: A dynamic systems approach to rapid decarbonization

    Get PDF
    Social tipping points are promising levers for accelerating progress towards net-zero greenhouse gas emission targets. They describe how social, political, economic or technological systems can move rapidly into a new state if cascading positive feedback mechanisms are triggered. Analysing the potential for social tipping requires considering the inherent complexity of social systems and their feedbacks. Here, drawing on insights from an expert elicitation workshop, we outline a dynamic systems approach that entails i) a systems outlook involving interconnected feedback mechanisms alongside cross-system and cross-scale interactions, ii) directed data collection efforts to provide empirical evidence and monitoring of social tipping dynamics, and iii) global, integrated, descriptive modelling to project future dynamics and provide ex-ante evidence for interventions aiming to trigger positive feedback mechanisms. We argue how and why this approach will strengthen the climate policy relevance of research on social tipping

    A dynamic systems approach to harness the potential of social tipping

    Get PDF
    Social tipping points are promising levers to achieve net-zero greenhouse gas emission targets. They describe how social, political, economic or technological systems can move rapidly into a new state if cascading positive feedback mechanisms are triggered. Analysing the potential of social tipping for rapid decarbonization requires considering the inherent complexity of social systems. Here, we identify that existing scientific literature is inclined to a narrative-based account of social tipping, lacks a broad empirical framework and a multi-systems view. We subsequently outline a dynamic systems approach that entails (i) a systems outlook involving interconnected feedback mechanisms alongside cross-system and cross-scale interactions, and including a socioeconomic and environmental injustice perspective (ii) directed data collection efforts to provide empirical evidence for and monitor social tipping dynamics, (iii) global, integrated, descriptive modelling to project future dynamics and provide ex-ante evidence for interventions. Research on social tipping must be accordingly solidified for climate policy relevance

    Aperiodic optical variability of intermediate polars-cataclysmic variables with truncated accretion disks

    Get PDF
    We study the power spectra of the variability of seven intermediate polars containing magnetized asynchronous accreting white dwarfs, XSS J00564+4548, IGR J00234+6141, DO Dra, V1223 Sgr, IGR J15094-6649, IGR J16500-3307 and IGR J17195-4100, in the optical band and demonstrate that their variability can be well described by a model based on fluctuations propagating in a truncated accretion disk. The power spectra have breaks at Fourier frequencies, which we associate with the Keplerian frequency of the disk at the boundary of the white dwarfs' magnetospheres. We propose that the properties of the optical power spectra can be used to deduce the geometry of the inner parts of the accretion disk, in particular: 1) truncation radii of the magnetically disrupted accretion disks in intermediate polars, 2) the truncation radii of the accretion disk in quiescent states of dwarf novae. © ESO, 2010
    • …
    corecore