13 research outputs found

    Punctuation and its functions in Russian educational slide presentations

    Get PDF
    This paper focuses on the up-to-date issues of graphic text organization of Russian presentation slides of university lectures in different subjects. The serialization, delineation and stylization functions of punctuation and suprasegmental (typographic) devices specifying the linguistic ‘uniqueness’ of the particular genre/register of the scientific discourse are considered. The specific nature of the use of these devices compared to that of the presentations in English consistent with the preliminary analysis of the communicative intents of the lecturer and the target audience is discussed

    Punctuation and its functions in Russian educational slide presentations

    No full text
    This paper focuses on the up-to-date issues of graphic text organization of Russian presentation slides of university lectures in different subjects. The serialization, delineation and stylization functions of punctuation and suprasegmental (typographic) devices specifying the linguistic ‘uniqueness’ of the particular genre/register of the scientific discourse are considered. The specific nature of the use of these devices compared to that of the presentations in English consistent with the preliminary analysis of the communicative intents of the lecturer and the target audience is discussed

    Designing Stable Bacillus anthracis Antigens with a View to Recombinant Anthrax Vaccine Development

    No full text
    Anthrax is a disease caused by Bacillus anthracis that affects mammals, including humans. Recombinant B. anthracis protective antigen (rPA) is the most common basis for modern anthrax vaccine candidates. However, this protein is characterised by low stability due to proteolysis and deamidation. Here, for the first time, two modification variants leading to full-size rPA stabilisation have been implemented simultaneously, through deamidation-prone asparagine residues substitution and by inactivation of proteolysis sites. Obtained modified rPA (rPA83m) has been demonstrated to be stable in various temperature conditions. Additionally, rPA1+2 containing PA domains I and II and rPA3+4 containing domains III and IV, including the same modifications, have been shown to be stable as well. These antigens can serve as the basis for a vaccine, since the protective properties of PA can be attributed to individual PA domains. The stability of each of three modified anthrax antigens has been considerably improved in compositions with tobacco mosaic virus-based spherical particles (SPs). rPA1+2/rPA3+4/rPA83m in compositions with SPs have maintained their antigenic specificity even after 40 days of incubation at +37 °C. Considering previously proven adjuvant properties and safety of SPs, their compositions with rPA83m/rPA1+2/rPA3+4 in any combinations might be suitable as a basis for new-generation anthrax vaccines

    Two approaches for the stabilization of Bacillus anthracis recombinant protective antigen

    No full text
    Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacteria Bacillus anthracis. There is a need for safe, highly effective, long-term storage vaccine formulations for mass vaccination. However, the development of new subunit vaccines based on recombinant protective antigen (rPA) faces the problem of vaccine antigen instability. Here, the potential of simultaneous application of two different approaches to stabilize rPA was demonstrated. Firstly, we employed spherical particles (SPs) obtained from the tobacco mosaic virus (TMV). Previously, we had reported that SPs can serve as an adjuvant and platform for antigen presentation. In the current work, SPs were shown to increase the stability of the full-size rPA without loss of its antigenic properties. The second direction was site-specific mutagenesis of asparagine residues to avoid deamidation that causes partial protein degradation. The modified recombinant protein comprising the PA immunogenic domains 3 and 4 (rPA3 + 4) was stable during storage at 4 and 25°C. rPA3 + 4 interacts with antibodies to rPA83 both individually and as a part of a complex with SPs. The results obtained can underpin the development of a recombinant vaccine with a full-size modified rPA (with similar amino acid substitutions that stabilize the protein) and SPs

    Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation

    No full text
    Mesenchymal stem cells (MSCs) have emerged as a potent therapeutic tool for the treatment of a number of pathologies, including immune pathologies. However, unwelcome effects of MSCs on blood coagulation have been reported, motivating us to explore the thrombotic properties of human MSCs from the umbilical cord. We revealed strong procoagulant effects of MSCs on human blood and platelet-free plasma using rotational thromboelastometry and thrombodynamic tests. A similar potentiation of clotting was demonstrated for MSC-derived extracellular vesicles (EVs). To offer approaches to avoid unwanted effects, we studied the impact of a heparin supplement on MSC procoagulative properties. However, MSCs still retained procoagulant activity toward blood from children receiving a therapeutic dose of unfractionated heparin. An analysis of the mechanisms responsible for the procoagulant effect of MSCs/EVs revealed the presence of tissue factor and other proteins involved in coagulation-associated pathways. Also, we found that some MSCs and EVs were positive for annexin V, which implies the presence of phosphatidylserine on their surfaces, which can potentiate clot formation. Thus, we revealed procoagulant activity of MSCs/EVs associated with the presence of phosphatidylserine and tissue factor, which requires further analysis to avoid adverse effects of MSC therapy in patients with a risk of thrombosis

    Surface characterization of the thermal remodeling helical plant virus.

    No full text
    Previously, we have reported that spherical particles (SPs) are formed by the thermal remodeling of rigid helical virions of native tobacco mosaic virus (TMV) at 94°C. SPs have remarkable features: stability, unique adsorption properties and immunostimulation potential. Here we performed a comparative study of the amino acid composition of the SPs and virions surface to characterize their properties and take an important step to understanding the structure of SPs. The results of tritium planigraphy showed that thermal transformation of TMV leads to a significant increase in tritium label incorporation into the following sites of SPs protein: 41-71 а.a. and 93-122 a.a. At the same time, there was a decrease in tritium label incorporation into the N- and C- terminal region (1-15 a.a., 142-158 a.a). The use of complementary physico-chemical methods allowed us to carry out a detailed structural analysis of the surface and to determine the most likely surface areas of SPs. The obtained data make it possible to consider viral protein thermal rearrangements, and to open new opportunities for biologically active complex design using information about SPs surface amino acid composition and methods of non-specific adsorption and bioconjugation

    Effect of the Coat Protein N-Terminal Domain Structure on the Structure and Physicochemical Properties of Virions of Potato Virus X and Alternanthera Mosaic Virus

    No full text
    The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (N peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions. The circular dichroism spectra of these viruses differed significantly, and the melting point of PVX virions was 10-12°C higher than that of AltMV virions. Alignment of the existing high-resolution 3D structures of the potexviral CPs showed that the RMSD value between the Cα-atoms was the largest for the N-terminal domains of the two compared models. Based on the computer modeling, the N peptide of the PVX CP is fully disordered. According to the synchrotron small-angle X-ray scattering (SAXS) data, the structure of CPs from the PVX and AltMV virions differ; in particular, the PVX CP has a larger portion of crystalline regions and, therefore, is more ordered. Based on the SAXS data, the diameters of the PVX and AltMV virions and helix parameters in solution were calculated. The influence of the conformation of the PVX CP N-terminal domain and its position relative to the virion surface on the virion structure was investigated. Presumably, an increased thermal stability of PVX virions vs. AltMV is provided by the extended N-terminal domain (N peptide, 28 amino acid residues), which forms additional contacts between the adjacent CP subunits in the PVX virion

    Signatures of Dermal Fibroblasts from RDEB Pediatric Patients

    No full text
    The recessive form of dystrophic epidermolysis bullosa (RDEB) is a debilitating disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Mutations in the COL7A1 gene induce multiple abnormalities, including chronic inflammation and profibrotic changes in the skin. However, the correlations between the specific mutations in COL7A1 and their phenotypic output remain largely unexplored. The mutations in the COL7A1 gene, described here, were found in the DEB register. Among them, two homozygous mutations and two cases of compound heterozygous mutations were identified. We created the panel of primary patient-specific RDEB fibroblast lines (FEB) and compared it with control fibroblasts from healthy donors (FHC). The set of morphological features and the contraction capacity of the cells distinguished FEB from FHC. We also report the relationships between the mutations and several phenotypic traits of the FEB. Based on the analysis of the available RNA-seq data of RDEB fibroblasts, we performed an RT-qPCR gene expression analysis of our cell lines, confirming the differential status of multiple genes while uncovering the new ones. We anticipate that our panels of cell lines will be useful not only for studying RDEB signatures but also for investigating the overall mechanisms involved in disease progression

    Signatures of Dermal Fibroblasts from RDEB Pediatric Patients

    No full text
    The recessive form of dystrophic epidermolysis bullosa (RDEB) is a debilitating disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Mutations in the COL7A1 gene induce multiple abnormalities, including chronic inflammation and profibrotic changes in the skin. However, the correlations between the specific mutations in COL7A1 and their phenotypic output remain largely unexplored. The mutations in the COL7A1 gene, described here, were found in the DEB register. Among them, two homozygous mutations and two cases of compound heterozygous mutations were identified. We created the panel of primary patient-specific RDEB fibroblast lines (FEB) and compared it with control fibroblasts from healthy donors (FHC). The set of morphological features and the contraction capacity of the cells distinguished FEB from FHC. We also report the relationships between the mutations and several phenotypic traits of the FEB. Based on the analysis of the available RNA-seq data of RDEB fibroblasts, we performed an RT-qPCR gene expression analysis of our cell lines, confirming the differential status of multiple genes while uncovering the new ones. We anticipate that our panels of cell lines will be useful not only for studying RDEB signatures but also for investigating the overall mechanisms involved in disease progression
    corecore