16 research outputs found

    Characterizations and Significantly Enhanced Dielectric Properties of PVDF Polymer Nanocomposites by Incorporating Gold Nanoparticles Deposited on BaTiO<sub>3</sub> Nanoparticles

    No full text
    Poly(vinylidene fluoride) (PVDF) nanocomposites were fabricated by incorporating BaTiO3 nanoparticles (particle size of ~100 nm, nBT), which were deposited by Au nanoparticles (nAu) with an average particle size of 17.8 ± 4.0 nm using a modified Turkevich method. Systematic characterizations on the synthesized nAu-nBT hybrid nanoparticles and nAu-nBT/PVDF nanocomposites with different contents of a filler were performed. The formation of nAu-nBT hybrid nanoparticles was confirmed with the calculated nAu:nBT ratio of 0.5:99.5 wt.%. The homogeneous dispersion of nAu and nBT in the PVDF polymer was obtained due to the interaction between the negative surface charge of the nAu-nBT filler (compared to that of the nBT) and polar β-PVDF phase, which was confirmed by the zeta potential measurement and Fourier-transform infrared spectroscopy, respectively. A significantly increased dielectric permittivity (ε′ ~ 120 at 103 Hz) with a slight temperature-dependent of nAu-nBT hybrid nanoparticles is an attractive method to improve the dielectric properties of a PVDF polymer for dielectrics applications

    Microstructural Evolution and High-Performance Giant Dielectric Properties of Lu<sup>3+</sup>/Nb<sup>5+</sup> Co-Doped TiO<sub>2</sub> Ceramics

    No full text
    Giant dielectric (GD) oxides exhibiting extremely large dielectric permittivities (ε’ > 104) have been extensively studied because of their potential for use in passive electronic devices. However, the unacceptable loss tangents (tanδ) and temperature instability with respect to ε’ continue to be a significant hindrance to their development. In this study, a novel GD oxide, exhibiting an extremely large ε’ value of approximately 7.55 × 104 and an extremely low tanδ value of approximately 0.007 at 103 Hz, has been reported. These remarkable properties were attributed to the synthesis of a Lu3+/Nb5+ co-doped TiO2 (LuNTO) ceramic containing an appropriate co-dopant concentration. Furthermore, the variation in the ε’ values between the temperatures of −60 °C and 210 °C did not exceed ±15% of the reference value obtained at 25 °C. The effects of the grains, grain boundaries, and second phase particles on the dielectric properties were evaluated to determine the dielectric properties exhibited by LuNTO ceramics. A highly dense microstructure was obtained in the as-sintered ceramics. The existence of a LuNbTiO6 microwave-dielectric phase was confirmed when the co-dopant concentration was increased to 1%, thereby affecting the dielectric behavior of the LuNTO ceramics. The excellent dielectric properties exhibited by the LuNTO ceramics were attributed to their inhomogeneous microstructure. The microstructure was composed of semiconducting grains, consisting of Ti3+ ions formed by Nb5+ dopant ions, alongside ultra-high-resistance grain boundaries. The effects of the semiconducting grains, insulating grain boundaries (GBs), and secondary microwave phase particles on the dielectric relaxations are explained based on their interfacial polarizations. The results suggest that a significant enhancement of the GB properties is the key toward improvement of the GD properties, while the presence of second phase particles may not always be effective

    Co2P2O7 Microplate/Bacterial Cellulose–Derived Carbon Nanofiber Composites with Enhanced Electrochemical Performance

    No full text
    Nanocrystalline Co2P2O7 and carbon nanofiber (Co2P2O7/CNFs) composites with enhanced electrochemical performance were obtained by calcination after a hydrothermal process with NH4CoPO4∙H2O/bacterial cellulose precursors under an argon atmosphere. SEM images showed that the CNFs were highly dispersed on the surfaces of Co2P2O7 microplates. The diagonal size of the Co2P2O7 plates ranged from 5 to 25 µm with thicknesses on a nanometer scale. Notably, with the optimal calcining temperature, the Co2P2O7/CNFs@600 material has higher specific micropore and mesopore surface areas than other samples, and a maximal specific capacitance of 209.9 F g−1, at a current density of 0.5 A g−1. Interestingly, CNF composite electrodes can enhance electrochemical properties, and contribute to better electrical conductivity and electron transfer. EIS measurements showed that the charge–transfer resistance (Rct) of the CNF composite electrodes decreased with increasing calcination temperature. Furthermore, the Co2P2O7/CNF electrodes exhibited higher energy and power densities than Co2P2O7 electrodes

    Enhanced Electrochemical Performance of Sugarcane Bagasse-Derived Activated Carbon via a High-Energy Ball Milling Treatment

    No full text
    Activated carbon (AC) from sugarcane bagasse was prepared using dry chemical activation with KOH. It was then subjected to a high-energy ball milling (HEBM) treatment under various milling speeds (600, 1200 and 1800 rpm) to produce AC nanoparticles from micro-size particles. The AC samples after the HEBM treatment exhibited reduced particle sizes, increased mesopore volume and a rich surface oxygen content, which contribute to higher pseudocapacitance. Notably, different HEBM speeds were used to find a good electrochemical performance. As a result, the AC/BM12 material, subjected to HEBM at 1200 rpm for 30 min, exhibited the highest specific capacitance, 257 F g−1, at a current density 0.5 A g−1. This is about 2.4 times higher than that of the AC sample. Moreover, the excellence capacitance retention of this sample was 93.5% after a 3000-cycle test at a current density of 5 A g−1. Remarkably, a coin cell electrode assembly was fabricated using the AC/BM12 material in a 1 M LiPF6 electrolyte. It exhibited a specific capacitance of 110 F g−1 with a high energy density of 27.9 W h kg−1

    Enhanced dielectric response and non-Ohmic properties of Ge-doped CaTiO3/CaCu3Ti4O12

    No full text
    We present a method for increasing the dielectric constant of CaTiO3/CaCu3Ti4O12 (CTO/CCTO) composites and retaining a low-loss tangent (tanδ) by doping with Ge dopant. The Ge-doped CTO/CCTO composites were fabricated using a one-step processing method. The phase composition and microstructure analyses confirmed the existence of CTO and CCTO phases, in which Ge doping ions can be substituted into both phases. The mean grain sizes of the two phases were slightly reduced by decreasing the porosity. Doping the CTO/CCTO with Ge doping ions resulted in a high dielectric constant by ~ two times, while a very low tanδ value of ~0.01 did not change. Furthermore, the dielectric constant changed by less than ±15% in the temperature range of −60 – 150°C. The nonlinear current density–electric field properties of CTO/CCTO can also be enhanced. Impedance spectroscopy showed a heterogeneous microstructure with enhanced grain boundary properties after doping with Ge dopants, giving rise to enhanced nonlinear electrical properties. The decreased grain resistivity due to Ge substitution is confirmed to originate from the increase in the Ti3+/Ti4+ ratio, which was analyzed using X–ray photoelectron spectroscopy
    corecore