200 research outputs found

    An introduction to the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas

    Get PDF
    This article gives a short overview of the development and characteristics of the OMERACT rheumatoid arthritis MRI scoring system (RAMRIS), followed by an introduction to the use of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas. With this atlas, MRIs of wrist and metacarpophalangeal joints of patients with rheumatoid arthritis can be scored for synovitis, bone oedema, and bone erosion, guided by standard reference images

    The EULAR–OMERACT rheumatoid arthritis MRI reference image atlas: the metacarpophalangeal joints

    Get PDF
    This paper presents the metacarpophalangeal (MCP) joint magnetic resonance images of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas. The illustrations include synovitis in the MCP joints (OMERACT RA magnetic resonance imaging scoring system (RAMRIS), grades 0–3), bone oedema in the metacarpal head and the phalangeal base (grades 0–3), and bone erosion in the metacarpal head and the phalangeal base (grades 0–3, and examples of higher grades). The presented reference images can be used to guide scoring of MCP joints according to the OMERACT RA MRI scoring system

    The development of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas

    Get PDF
    Based on a previously developed rheumatoid arthritis MRI scoring system (OMERACT 2002 RAMRIS), the development team agreed which joints, MRI features, MRI sequences, and image planes would best illustrate the scoring system in an atlas. After collecting representative examples for all grades for each abnormality (synovitis, bone oedema, and bone erosion), the team met for a three day period to review the images and choose by consensus the most illustrative set for each feature, site, and grade. A predefined subset of images (for example, for erosion—all coronal slices through the bone) was extracted. These images were then re-read by the group at a different time point to confirm the scores originally assigned. Finally, all selected images were photographed and formatted by one centre and distributed to all readers for final approval

    Conventional radiography requires a MRI-estimated bone volume loss of 20% to 30% to allow certain detection of bone erosions in rheumatoid arthritis metacarpophalangeal joints

    Get PDF
    The aim of this study was to demonstrate the ability of conventional radiography to detect bone erosions of different sizes in metacarpophalangeal (MCP) joints of rheumatoid arthritis (RA) patients using magnetic resonance imaging (MRI) as the standard reference. A 0.2 T Esaote dedicated extremity MRI unit was used to obtain axial and coronal T1-weighted gradient echo images of the dominant 2nd to 5th MCP joints of 69 RA patients. MR images were obtained and evaluated for bone erosions according to the OMERACT recommendations. Conventional radiographs of the 2nd to 5th MCP joints were obtained in posterior-anterior projection and evaluated for bone erosions. The MRI and radiography readers were blinded to each other's assessments. Grade 1 MRI erosions (1% to 10% of bone volume eroded) were detected by radiography in 20%, 4%, 7% and 13% in the 2nd, 3rd, 4th and 5th MCP joint, respectively. Corresponding results for grade 2 erosions (11% to 20% of bone volume eroded) were 42%, 10%, 60% and 24%, and for grade 3 erosions (21% to 30% of bone volume eroded) 75%, 67%, 75% and 100%. All grade 4 (and above) erosions were detected on radiographs. Conventional radiography required a MRI-estimated bone erosion volume of 20% to 30% to allow a certain detection, indicating that MRI is a better method for detection and grading of minor erosive changes in RA MCP joints

    Are bone erosions detected by magnetic resonance imaging and ultrasonography true erosions? A comparison with computed tomography in rheumatoid arthritis metacarpophalangeal joints

    Get PDF
    The objective of the study was, with multidetector computed tomography (CT) as the reference method, to determine whether bone erosions in rheumatoid arthritis (RA) metacarpophalangeal (MCP) joints detected with magnetic resonance imaging (MRI) and ultrasonography (US), but not with radiography, represent true erosive changes. We included 17 RA patients with at least one, previously detected, radiographically invisible MCP joint MRI erosion, and four healthy control individuals. They all underwent CT, MRI, US and radiography of the 2nd to 5th MCP joints of one hand on the same day. Each imaging modality was evaluated for the presence of bone erosions in each MCP joint quadrant. In total, 336 quadrants were examined. The sensitivity, specificity and accuracy, respectively, for detecting bone erosions (with CT as the reference method) were 19%, 100% and 81% for radiography; 68%, 96% and 89% for MRI; and 42%, 91% and 80% for US. When the 16 quadrants with radiographic erosions were excluded from the analysis, similar values for MRI (65%, 96% and 90%) and US (30%, 92% and 80%) were obtained. CT and MRI detected at least one erosion in all patients but none in control individuals. US detected at least one erosion in 15 patients, however, erosion-like changes were seen on US in all control individuals. Nine patients had no erosions on radiography. In conclusion, with CT as the reference method, MRI and US exhibited high specificities (96% and 91%, respectively) in detecting bone erosions in RA MCP joints, even in the radiographically non-erosive joints (96% and 92%). The moderate sensitivities indicate that even more erosions than are seen on MRI and, particularly, US are present. Radiography exhibited high specificity (100%) but low sensitivity (19%). The present study strongly indicates that bone erosions, detected with MRI and US in RA patients, represent a loss of calcified tissue with cortical destruction, and therefore can be considered true bone erosions

    The EULAR-OMERACT rheumatoid arthritis MRI reference image atlas: the wrist joint

    Get PDF
    This paper presents the wrist joint MR images of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas. Reference images for scoring synovitis, bone oedema, and bone erosions according to the OMERACT RA MRI scoring (RAMRIS) system are provided. All grades (0–3) of synovitis are illustrated in each of the three wrist joint areas defined in the scoring system—that is, the distal radioulnar joint, the radiocarpal joint, and the intercarpal-carpometacarpal joints. For reasons of feasibility, examples of bone abnormalities are limited to five selected bones: the radius, scaphoid, lunate, capitate, and a metacarpal base. In these bones, grades 0–3 of bone oedema are illustrated, and for bone erosion, grades 0–3 and examples of higher grades are presented. The presented reference images can be used to guide scoring of wrist joints according to the OMERACT RA MRI scoring system

    Forefoot pathology in rheumatoid arthritis identified with ultrasound may not localise to areas of highest pressure: cohort observations at baseline and twelve months

    Get PDF
    BackgroundPlantar pressures are commonly used as clinical measures, especially to determine optimum foot orthotic design. In rheumatoid arthritis (RA) high plantar foot pressures have been linked to metatarsophalangeal (MTP) joint radiological erosion scores. However, the sensitivity of foot pressure measurement to soft tissue pathology within the foot is unknown. The aim of this study was to observe plantar foot pressures and forefoot soft tissue pathology in patients who have RA.Methods A total of 114 patients with established RA (1987 ACR criteria) and 50 healthy volunteers were assessed at baseline. All RA participants returned for reassessment at twelve months. Interface foot-shoe plantar pressures were recorded using an F-Scan® system. The presence of forefoot soft tissue pathology was assessed using a DIASUS musculoskeletal ultrasound (US) system. Chi-square analyses and independent t-tests were used to determine statistical differences between baseline and twelve months. Pearson’s correlation coefficient was used to determine interrelationships between soft tissue pathology and foot pressures.ResultsAt baseline, RA patients had a significantly higher peak foot pressures compared to healthy participants and peak pressures were located in the medial aspect of the forefoot in both groups. In contrast, RA participants had US detectable soft tissue pathology in the lateral aspect of the forefoot. Analysis of person specific data suggests that there are considerable variations over time with more than half the RA cohort having unstable presence of US detectable forefoot soft tissue pathology. Findings also indicated that, over time, changes in US detectable soft tissue pathology are out of phase with changes in foot-shoe interface pressures both temporally and spatially.Conclusions We found that US detectable forefoot soft tissue pathology may be unrelated to peak forefoot pressures and suggest that patients with RA may biomechanically adapt to soft tissue forefoot pathology. In addition, we have observed that, in patients with RA, interface foot-shoe pressures and the presence of US detectable forefoot pathology may vary substantially over time. This has implications for clinical strategies that aim to offload peak plantar pressures

    Longitudinal MRI follow-up of rheumatoid arthritis in the temporomandibular joint: importance of synovial proliferation as an early-stage sign

    Get PDF
    This article describes longitudinal magnetic resonance imaging (MRI) observations in a patient with rheumatoid arthritis of the temporomandibular joint. The characteristic findings included marked synovial proliferation, which was observed before the onset of severe bone destruction. MRI is considered to provide valuable information for the early detection of rheumatoid arthritis of the temporomandibular joint

    MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab: results from the randomised, placebo-controlled, double-blind RA-SCORE study

    Get PDF
    Objective To evaluate changes in structural damage and joint inflammation assessed by MRI following rituximab treatment in a Phase 3 study of patients with active rheumatoid arthritis (RA) despite methotrexate (MTX) who were naive to biological therapy. Methods Patients were randomised to receive two infusions of placebo (n=63), rituximab 500 mg (n=62), or rituximab 1000 mg (n=60) intravenously on days 1 and 15. MRI scans and radiographs of the most inflamed hand and wrist were acquired at baseline, weeks 12 (MRI only), 24 and 52. The primary end point was the change in MRI erosion score from baseline at week 24. Results Patients treated with rituximab demonstrated significantly less progression in the mean MRI erosion score compared with those treated with placebo at weeks 24 (0.47, 0.18 and 1.60, respectively, p=0.003 and p=0.001 for the two rituximab doses vs placebo) and 52 (−0.30, 0.11 and 3.02, respectively; p<0.001 and p<0.001). Cartilage loss at 52 weeks was significantly reduced in the rituximab group compared with the placebo group. Other secondary end points of synovitis and osteitis improved significantly with rituximab compared with placebo as early as 12 weeks and improved further at weeks 24 and 52. Conclusions This study demonstrated that rituximab significantly reduced erosion and cartilage loss at week 24 and week 52 in MTX-inadequate responder patients with active RA, suggesting that MRI is a valuable tool for assessing inflammatory and structural damage in patients with established RA receiving rituxima
    • …
    corecore