22 research outputs found

    The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi

    Get PDF
    Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells

    De Novo Peroxisome Biogenesis in Penicillium Chrysogenum Is Not Dependent on the Pex11 Family Members or Pex16

    Get PDF
    We have analyzed the role of the three members of the Pex11 protein family in peroxisome formation in the filamentous fungus Penicillium chrysogenum. Two of these, Pex11 and Pex11C, are components of the peroxisomal membrane, while Pex11B is present at the endoplasmic reticulum. We show that Pex11 is a major factor involved in peroxisome proliferation. We also demonstrate that P. chrysogenum cells deleted for known peroxisome fission factors (all Pex11 family proteins and Vps1) still contain peroxisomes. Interestingly, we find that, unlike in mammals, Pex16 is not essential for peroxisome biogenesis in P. chrysogenum, as partially functional peroxisomes are present in a pex16 deletion strain. We also show that Pex16 is not involved in de novo biogenesis of peroxisomes, as peroxisomes were still present in quadruple Ξ”pex11 Ξ”pex11B Ξ”pex11C Ξ”pex16 mutant cells. By contrast, pex3 deletion in P. chrysogenum led to cells devoid of peroxisomes, suggesting that Pex3 may function independently of Pex16. Finally, we demonstrate that the presence of intact peroxisomes is important for the efficiency of ß-lactam antibiotics production by P. chrysogenum. Remarkably, distinct from earlier results with low penicillin producing laboratory strains, upregulation of peroxisome numbers in a high producing P. chrysogenum strain had no significant effect on penicillin production

    Drosophila Carrying Pex3 or Pex16 Mutations Are Models of Zellweger Syndrome That Reflect Its Symptoms Associated with the Absence of Peroxisomes

    Get PDF
    The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology
    corecore