26 research outputs found

    Distinct populations of neurons activated by heroin and cocaine in the striatum as assessed by catFISH

    Get PDF
    Despite the still prevailing notion of a shared substrate of action for all addictive drugs, there is evidence suggesting that opioid and psychostimulant drugs differ substantially in terms of their neurobiological and behavioural effects. These differences may reflect separate neural circuits engaged by the two drugs. Here we used the catFISH technique to investigate the degree of overlap between neurons engaged by heroin versus cocaine in adult male Sprague-Dawley rats. The catFISH technique is a within-subject procedure that takes advantage of the different transcriptional time-course of the immediate-early genes homer 1a and arc to determine to what extent two stimuli separated by an interval of 25 min engage the same neuronal population. We found that throughout the striatal complex the neuronal populations activated by non-contingent intravenous injections of cocaine (800 µg/kg) and heroin (100 and 200 µg/kg), administered at an interval of 25 min from each other, overlapped to a much lesser extent than in the case of two injections of cocaine (800 µg/kg), also 25 min apart. The greatest reduction in overlap between populations activated by cocaine and heroin was in the dorsomedial and dorsolateral striatum (~30% and ~22%, respectively, of the overlap observed for the sequence cocaine-cocaine). Our results point toward a significant separation between neuronal populations activated by heroin and cocaine in the striatal complex. We propose that our findings are a proof of concept that these two drugs are encoded differently in a brain area believed to be a common neurobiological substrate to drug abuse

    Regional differences in striatal neuronal ensemble excitability following cocaine and extinction memory retrieval in Fos-GFP mice

    Get PDF
    Learned associations between drugs of abuse and the drug administration environment play an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction learning. While widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drugenvironment associations. Using a cocaine conditioned locomotion procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAccore and NAcshell), and dorsal striatum (DS) following cocaine conditioning and extinction in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). 7-13 days later both groups were re-exposed to the activity chamber under drug-free conditions, and Paired, but not Unpaired, mice exhibited conditioned locomotion. In a separate group of mice, conditioned locomotion was extinguished by repeatedly exposing mice to the activity chamber under drugfree conditions. Following the expression and extinction of conditioned locomotion, GFP+ neurons in the NAccore (but not NAcshell and DS) displayed greater firing capacity compared to surrounding GFP– neurons. This difference in excitability was due to a generalized decrease in GFP– excitability following conditioned locomotion, and a selective increase in GFP+ excitability following its extinction. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations

    Changes in appetitive associative strength modulates nucleus accumbens, but not orbitofrontal cortex neuronal ensemble excitability

    Get PDF
    Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, animals may adapt accordingly by inhibiting food seeking responses. Sparsely activated sets of neurons, coined neuronal ensembles, have been shown to encode the strength of reward-cue associations. While alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice following appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP– neurons. Following extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell

    Extinction of cue-evoked food seeking recruits a GABAergic interneuron ensemble in the dorsal medial prefrontal cortex of mice

    Get PDF
    Animals must quickly adapt food-seeking strategies to locate nutrient sources in dynamically changing environments. Learned associations between food and environmental cues that predict its availability promote food-seeking behaviors. However, when such cues cease to predict food availability, animals undergo 'extinction' learning, resulting in the inhibition of food-seeking responses. Repeatedly activated sets of neurons, or 'neuronal ensembles', in the dorsal medial prefrontal cortex (dmPFC) are recruited following appetitive conditioning and undergo physiological adaptations thought to encode cue-reward associations. However, little is known about how the recruitment and intrinsic excitability of such dmPFC ensembles are modulated by extinction learning. Here, we used in vivo 2-Photon imaging in male Fos-GFP mice that express green fluorescent protein (GFP) in recently behaviorally-activated neurons to determine the recruitment of activated pyramidal and GABAergic interneuron mPFC ensembles during extinction. During extinction, we revealed a persistent activation of a subset of interneurons which emerged from a wider population of interneurons activated during the initial extinction session. This activation pattern was not observed in pyramidal cells, and extinction learning did not modulate the excitability properties of activated neurons. Moreover, extinction learning reduced the likelihood of reactivation of pyramidal cells activated during the initial extinction session. Our findings illuminate novel neuronal activation patterns in the dmPFC underlying extinction of food-seeking, and in particular, highlight an important role for interneuron ensembles in this inhibitory form of learning

    Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    Get PDF
    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express GFP in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5-2 mg/kg) or pellet priming (1-4 noncontingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and nonactivated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPA receptor/NMDA receptor current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. While ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavio

    Acute, but not longer-term, exposure to environmental enrichment attenuates Pavlovian cue-evoked conditioned approach and Fos expression in the prefrontal cortex in mice.

    Get PDF
    Funder: The University of Sussex Strategic Development FundsFunder: Sussex Neuroscience 4‐year PhD programmeExposure to environmental enrichment can modify the impact of motivationally relevant stimuli. For instance, previous studies in rats have found that even a brief, acute (~1 day), but not chronic, exposure to environmentally enriched (EE) housing attenuates instrumental lever pressing for sucrose-associated cues in a conditioned reinforcement setup. Moreover, acute EE reduces corticoaccumbens activity, as measured by decreases in expression of the neuronal activity marker "Fos." Currently, it is not known whether acute EE also reduces sucrose seeking and corticoaccumbens activity elicited by non-contingent or "forced" exposure to sucrose cues, which more closely resembles cue exposure encountered in daily life. We therefore measured the effects of acute/intermittent (1 day or 6 day of EE prior to test day) versus chronic (EE throughout conditioning lasting until test day) EE on the ability of a Pavlovian sucrose cue to elicit sucrose seeking (conditioned approach) and Fos expression in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and nucleus accumbens (NAc) in mice. One day, but not 6 day or chronic EE , reduced sucrose seeking and Fos in the deep layers of the dorsal mPFC. By contrast, 1 day, 6 day, and chronic EE all reduced Fos in the shallow layers of the OFC. None of the EE manipulations modulated NAc Fos expression. We reveal how EE reduces behavioral reactivity to sucrose cues by reducing activity in select prefrontal cortical brain areas. Our work further demonstrates the robustness of EE in its ability to modulate various forms of reward-seeking across species

    New technologies for examining neuronal ensembles in drug addiction and fear

    Get PDF
    Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear
    corecore