86 research outputs found

    A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime

    Full text link
    We present and implement a non-destructive detection scheme for the transition probability readout of an optical lattice clock. The scheme relies on a differential heterodyne measurement of the dispersive properties of lattice-trapped atoms enhanced by a high finesse cavity. By design, this scheme offers a 1st order rejection of the technical noise sources, an enhanced signal-to-noise ratio, and an homogeneous atom-cavity coupling. We theoretically show that this scheme is optimal with respect to the photon shot noise limit. We experimentally realize this detection scheme in an operational strontium optical lattice clock. The resolution is on the order of a few atoms with a photon scattering rate low enough to keep the atoms trapped after detection. This scheme opens the door to various different interrogations protocols, which reduce the frequency instability, including atom recycling, zero-dead time clocks with a fast repetition rate, and sub quantum projection noise frequency stability

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670 mW670\,\mathrm{mW} output power at 671 nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/2→4I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented

    Attitudes towards complementary and alternative medicine in chronic pain syndromes: a questionnaire-based comparison between primary headache and low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complementary and Alternative Medicine (CAM) is widely used and popular among patients with primary headache or low back pain (LBP). Aim of the study was to analyze attitudes of headache and LBP patients towards the use of CAM.</p> <p>Methods</p> <p>Two questionnaire-based surveys were applied comparing 432 primary headache and 194 LBP patients.</p> <p>Results</p> <p>In total, 84.75% of all patients reported use of CAM; with significantly more LBP patients. The most frequently-used CAM therapies in headache were acupuncture (71.4%), massages (56.4%), and thermotherapy (29.2%), in LBP thermotherapy (77.4%), massages (62.7%), and acupuncture (51.4%). The most frequent attitudes towards CAM use in headache vs. LBP: "leave nothing undone" (62.5% vs. 52.1%; p = 0.006), "take action against the disease" (56.8% vs. 43.2%; p = 0.006). Nearly all patients with previous experience with CAM currently use CAM in both conditions (93.6% in headache; 100% in LBP). However, the majority of the patients had no previous experience.</p> <p>Conclusion</p> <p>Understanding motivations for CAM treatment is important, because attitudes derive from wishes for non-pharmacological treatment, to be more involved in treatment and avoid side effects. Despite higher age and more permanent pain in LBP, both groups show high use of CAM with only little specific difference in preferred methods and attitudes towards CAM use. This may reflect deficits and unfulfilled goals in conventional treatment. Maybe CAM can decrease the gap between patients' expectations about pain therapy and treatment reality, considering that both conditions are often chronic diseases, causing high burdens for daily life.</p

    A Nanostructured Lipid System to Improve the Oral Bioavailability of Ruthenium(II) Complexes for the Treatment of Infections Caused by Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) is an infectious, airborne disease caused by the bacterium Mycobacterium tuberculosis that mainly affects the lungs. Fortunately, tuberculosis is a curable disease, and in recent years, death rates for this disease have decreased. However, the existence of antibiotic-resistant strains and the occurrence of co-infections with human immunodeficiency virus (HIV), have led to increased mortality in recent years. Another area of concern is that one-third of the worldâ€Čs population is currently infected with M. tuberculosis in its latent state, serving as a potential reservoir for active TB. In an effort to address the failure of current TB drugs, greater attention is being given to the importance of bioinorganic chemistry as an ally in new research into the development of anti-TB drugs. Ruthenium (Ru) is a chemical element that can mimic iron (Fe) in the body. In previous studies involving the following heteroleptic Ru complexes, [Ru(pic)(dppb)(bipy)]PF6 (SCAR1), [Ru(pic)(dppb)(Me-bipy)]PF6 (SCAR2), [Ru(pic)(dppb)(phen)]PF6 (SCAR4), cis-[Ru(pic)(dppe)2]PF6 (SCAR5), and [Ru(pic)(dppe)(phen)]PF6 (SCAR7), we observed excellent anti-TB activity, moderate cell-toxicity, and a lack of oral bioavailability in an in vivo model of these complexes. Therefore, the objective of this study was to evaluate the toxicity and oral bioavailability of these complexes by loading them into a nanostructured lipid system. The nanostructured lipid system was generated using different ratios of surfactant (soybean phosphatidylcholine, EumulginÂź, and sodium oleate), aqueous phase (phosphate buffer with a concentration of 1X and pH 7.4), and oil (cholesterol) to generate a system for the incorporation of Ru(II) compounds. The anti-TB activity of the compounds was determined using a microdilution assay with Resazurin (REMA) against strains of M. tuberculosis H37Rv and clinical isolates resistant. Cytotoxicity assay using J774.A1 cells (ATCC TIB-67) and intra-macrophage activity were performed. The oral bioavailability assay was used to analyze blood collected from female BALB/C mice. Plasma collected from the same mice was analyzed via inductively coupled plasma mass spectrometry (ICP-MS) to quantify the number of Ru ions. The complexes loaded into the nanostructured lipid system maintained in vitro activity and toxicity was found to be reduced compared with the compounds that were not loaded. The complexes showed intra-macrophagic activity and were orally bioavailable

    Molecular determinants of a Ca2+-binding site in the pore of cyclic nucleotide-gated channels: S5/S6 segments control affinity of intrapore glutamates.

    No full text
    Cyclic nucleotide-gated (CNG) channels play an important role in Ca2+ signaling in many cells. CNG channels from various tissues differ profoundly in their Ca2+ permeation properties. Using the voltage-dependent Ca2+ blockage of monovalent current in wild-type channels, chimeric constructs and point mutants, we have identified structural elements that determine the distinctively different interaction of Ca2+ with CNG channels from rod and cone photoreceptors and olfactory neurons. Segments S5 and S6 and the extracellular linkers flanking the pore region are the only structural elements that account for the differences between channels. Ca2+ blockage is strongly modulated by external pH. The different pH dependence of blockage suggests that the pKa of intrapore glutamates and their protonation pattern differ among channels. The results support the hypothesis that the S5-pore-S6 module, by providing a characteristic electrostatic environment, determines the protonation state of pore glutamates and thereby controls Ca2+ affinity and permeation in each channel type

    Das Verhalten der Zunge bei verkleinertem Zungenraum

    No full text
    • 

    corecore