524 research outputs found

    Anomalous strong exchange narrowing in excitonic systems

    Full text link
    We investigate theoretically the phenomenon of exchange narrowing in the absorption spectrum of a chain of monomers, which are coupled via resonant dipole-dipole interaction. The individual (uncoupled) monomers exhibit a broad absorption line shape due to the coupling to an environment consisting of a continuum of vibrational modes. Upon increasing the interaction between the monomers, the absorption spectrum of the chain narrows. For a non-Markovian environment with a Lorentzian spectral density, we find a narrowing of the peak width (full width at half maximum (FWHM)) by a factor 1/N, where N is the number of monomers. This is much stronger than the usual 1/sqrt{N} narrowing. Furthermore it turns out that for a Markovian environment no exchange narrowing at all occurs. The relation of different measures of the width (FWHM, standard deviation) is discussed

    The J- and H-bands of dye aggregate spectra: Analysis of the coherent exciton scattering (CES) approximation

    Full text link
    The validity of the CES approximation is investigated by comparison with direct diagonalisation of a model vibronic Hamiltonian of NN identical monomers interacting electronically. Even for quite short aggregates (N\gtrsim 6) the CES approximation is shown to give results in agreement with direct diagonalisation, for all coupling strengths, except that of intermediate positive coupling (the H-band region). However, previously excellent agreement of CES calculations and measured spectra in the H-band region was obtained [A. Eisfeld, J. S. Briggs, Chem. Phys. 324, 376]. This is shown to arise from use of the measured monomer spectrum which includes implicitly dissipative effects not present in the model calculation

    Quantum Dynamics Simulation with Classical Oscillators

    Full text link
    In a previous paper [J.S.Briggs and A.Eisfeld, Phys.Rev.A 85, 052111] we showed that the time-development of the complex amplitudes of N coupled quantum states can be mapped by the time development of positions and velocities of N coupled classical oscillators. Here we examine to what extent this mapping can be realised to simulate the "quantum" properties of entanglement and qubit manipulation. By working through specific examples, e.g. of quantum gate operation, we seek to illuminate quantum/classical differences which hitherto have been treated more mathematically. In addition we show that important quantum coupled phenomena, such as the Landau-Zener transition and the occurrence of Fano resonances can be simulated by classical oscillators

    On the Equivalence of Quantum and Classical Coherence in Electronic Energy Transfer

    Full text link
    To investigate the effect of quantum coherence on electronic energy transfer, which is the subject of current interest in photosynthesis, we solve the problem of transport for the simplest model of an aggregate of monomers interacting through dipole-dipole forces using both quantum and classical dynamics. We conclude that for realistic coupling strengths quantum and classical coherent transport are identical. This is demonstrated by numerical calculations for a linear chain and for the photosynthetic Fenna-Matthews-Olson (FMO) comple

    Conical intersections in an ultracold gas

    Full text link
    We find that energy surfaces of more than two atoms or molecules interacting via dipole-dipole po- tentials generically possess conical intersections (CIs). Typically only few atoms participate strongly in such an intersection. For the fundamental case, a circular trimer, we show how the CI affects adiabatic excitation transport via electronic decoherence or geometric phase interference. These phe- nomena may be experimentally accessible if the trimer is realized by light alkali atoms in a ring trap, whose dipole-dipole interactions are induced by off-resonant dressing with Rydberg states. Such a setup promises a direct probe of the full many-body density dynamics near a conical intersection.Comment: 4 pages, 4 figures, replacement to add archive referenc

    Excitation transport through Rydberg dressing

    Full text link
    We show how to create long range interactions between alkali-atoms in different hyper-fine ground states, allowing coherent electronic quantum state migration. The scheme uses off resonant dressing with atomic Rydberg states, exploiting the dipole-dipole excitation transfer that is possible between those. Actual population in the Rydberg state is kept small. Dressing offers large advantages over the direct use of Rydberg levels: It reduces ionisation probabilities and provides an additional tuning parameter for life-times and interaction-strengths. We present an effective Hamiltonian for the ground-state manifold and show that it correctly describes the full multi-state dynamics for up to 5 atoms.Comment: 22 pages + 6 pages appendices, 8 figures, replaced with revised version, added journal referenc

    Newton's cradle and entanglement transport in a flexible Rydberg chain

    Full text link
    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.Comment: 4 pages, 3 figures. Revised versio

    Excitons in Molecular Aggregates with L\'evy Disorder: Anomalous Localization and Exchange Broadening of Optical Spectra

    Get PDF
    We predict the existence of exchange broadening of optical lineshapes in disordered molecular aggregates and a nonuniversal disorder scaling of the localization characteristics of the collective electronic excitations (excitons). These phenomena occur for heavy-tailed L\'evy disorder distributions with divergent second moments - distributions that play a role in many branches of physics. Our results sharply contrast with aggregate models commonly analyzed, where the second moment is finite. They bear a relevance for other types of collective excitations as well

    Dipole-dipole induced global motion of Rydberg-dressed atom clouds

    Full text link
    We consider two clouds of ground state alkali atoms in two distinct hyperfine ground states. Each level is far off-resonantly coupled to a Rydberg state, which leads to dressed ground states with a weak admixture of the Rydberg state properties. Due to this admixture, for a proper choice of the Rydberg states, the atoms experience resonant dipole-dipole interactions that induce mechanical forces acting on all atoms within both clouds. This behavior is in contrast to the dynamics predicted for bare dipole-dipole interactions between Rydberg superatoms, where only a single atom per cloud is subject to dipole-dipole induced motion [Phys. Rev. A {\bf 88} 012716 (2013)].Comment: 15 pages, 2 figure

    Source of entangled atom pairs on demand, using the Rydberg blockade

    Full text link
    Two ultracold atom clouds, each separately in a dipole-blockade regime, realize a source of entangled atom pairs that can be ejected on demand. Entanglement generation and ejection is due to resonant dipole-dipole interactions, while van-der-Waals interactions are predominantly responsible for the blockade that ensures the ejection of a single atom per cloud. A source of entangled atoms using these effects can operate with a 10 kHz repetition rate producing ejected atoms with velocities of about 0.5 m/s.Comment: 7 pages, 4 figure
    corecore