21 research outputs found

    Charakterisierung von CEACAM20, einer potenziellen Zielstruktur für die Tumorimmuntherapie

    Get PDF

    Loss of the mammal-specific tectorial membrane component CEA cell adhesion molecule 16 (CEACAM16) leads to hearing impairment at low and high frequencies

    Get PDF
    The vertebrate-restricted carcinoembryonic antigen gene family evolves extremely rapidly. Among their widely expressed members, the mammal-specific, secreted CEACAM16 is exceptionally well conserved and specifically expressed in the inner ear. To elucidate a potential auditory function we inactivated murine Ceacam16 by homologous recombination. In young Ceacam16-/- mice the hearing threshold for frequencies below 10 kHz and above 22 kHz was raised. This hearing impairment progressed with age. A similar phenotype is observed in hearing-impaired members of Family 1070 with non-syndromic autosomal dominant hearing loss (DFNA4) who carry a missense mutation in CEACAM16. CEACAM16 was found in interdental and Deiters cells and was deposited in the tectorial membrane of the cochlea between postnatal day 12 and 15, when hearing starts in mice. In cochlear sections of Ceacam16-/- mice tectorial membranes were significantly more often stretched out as compared to wild-type mice where they were mostly contracted and detached from the outer hair cells. Homotypic cell sorting observed after ectopic cell surface expression of the carboxy-terminal immunoglobulin variable-like N2 domain of CEACAM16 indicated that CEACAM16 can interact in trans. Furthermore, Western blot analyses of membrane-bound CEACAM16 under reducing and non-reducing conditions demonstrated oligomerization via unpaired cysteines. Taken together, CEACAM16 probably can form higher order structures with other tectorial membrane proteins such as α-tectorin and β-tectorin and influences the physical properties of the tectorial membrane. Evolution of CEACAM16 might have been an important step for the specialization of the mammalian cochlea allowing hearing over an extended frequency range

    Recombinant adeno-associated virus type 2-mediated gene transfer into human keratinocytes is influenced by both the ubiquitin/proteasome pathway and epidermal growth factor receptor tyrosine kinase.

    No full text
    Efficient gene delivery into keratinocytes is a prerequisite for successful skin gene therapy. Vectors based on recombinant adeno-associated virus type 2 (rAAV-2) offer several promising features that make them attractive for cutaneous applications. However, highly efficient gene delivery may be hampered by different cellular factors, including lack of viral receptors, impairment of cytoplasmic trafficking or limitations in viral second-strand synthesis. This study was undertaken to find factors that influence rAAV-2-mediated in vitro gene transfer into human keratinocytes and, consequently, ways to optimize gene delivery. Transduction experiments using rAAV-2 vectors expressing green fluorescent protein (GFP) demonstrated that impaired cellular trafficking of vector particles and high levels of autophosphorylation at epidermal growth factor receptor tyrosine kinase (EGF-R TK) have a negative influence on gene transfer into keratinocytes. Treatment of keratinocytes with proteasome inhibitor MG132 resulted in a transient augmentation of GFP expression in up to 37% of cells. Treatment with EGF-R TK inhibitors (quinazoline type) enhanced transgene expression in 10–14.5% of the cells. Gene expression was stable for more than 10 weeks and persisted until proliferative senescence occurred. This stable gene expression allows speculation that keratinocyte stem cells have initially been transduced. These findings might have relevance for the use of rAAV-2 vectors in skin gene therapy: transient enhancement of rAAV-2 transduction with proteasome inhibitors might be useful for genetic promotion of wound healing or skin-directed vaccination. Treatment with quinazolines may increase rAAV-2 transduction of keratinocyte stem cells, which is important for gene therapy approaches to inherited diseases

    Role of CEACAM1 and CEACAM20 in an In Vitro Model of Prostate Morphogenesis

    No full text
    CEACAM20, a novel member of the CEACAM1 gene family with expression limited to the lumen of small intestine, testes, and prostate, is co-expressed with CEACAM1 in adult prostate tissue and down-regulated to the same extent as CEACAM1 in prostate cancer. Since prostate cancer often involves loss of epithelial lumen formation, we hypothesized that CEACAM20 and CEACAM1 play important roles in lumen formation of normal prostate epithelium. When prostate cells were grown on Matrigel as a source of extracellular matrix (ECM), they differentiated into acinar structures with single tubules and well-defined lumina closely resembling embryonic prostate organoids. Confocal microscopic analysis revealed restriction of CEACAM20 to acini and CEACAM1 to tubule structures, respectively. Inhibition of CEACAM1 with antibodies or soluble CEACAM1 or antisense oligonucleotides inhibited tubule formation by over 50% while the remaining tubules were stunted. Inhibition of CEACAM20 with antisense oligonucleotides completely inhibited tubule formation and stunted the growth of acini. We conclude that CEACAM20 and CEACAM1 not only mark the lumina of adult prostate tissue but also play a critical role in the vitro generation of prostate organoids

    Correlation of changes in hemodynamic response as measured by cerebral optical spectrometry with subjective pain ratings in volunteers and patients: a prospective cohort study

    No full text
    Andreas Eisenried,1,2 Naola Austin,1 Benjamin Cobb,1 Alireza Akhbardeh,3 Brendan Carvalho,1 David C Yeomans,1 Alexander Z Tzabazis1,4 1Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; 2Department of Anesthesiology, University Hospital Erlangen, Erlangen, Germany; 3ROPAmedics LLC, San Francisco, CA, USA; 4Department of Anesthesiology and Critical Care, University Hospital Schleswig-Holstein, Lübeck, Germany Purpose: Noninvasive cerebral optical spectrometry is a promising candidate technology for the objective assessment physiological changes during pain perception. This study’s primary objective was to test if there was a significant correlation between the changes in physiological parameters as measured by a cerebral optical spectrometry-based algorithm (real-time objective pain assessment [ROPA]) and subjective pain ratings obtained from volunteers and laboring women. Secondary aims were performance assessment using linear regression and receiver operating curve (ROC) analysis.Patients and methods: Prospective cohort study performed in Human Pain Laboratory and Labor and Delivery Unit. After institutional review board approval, we evaluated ROPA in volunteers undergoing the cold pressor test and in laboring women before and after epidural or combined spinal epidural placement. Linear regression was performed to measure correlations. ROCs and corresponding areas under the ROCs (AUC), as well as Youden’s indices, as a measure of diagnostic effectiveness, were calculated.Results: Correlations between numeric rating scale or visual analog scale and ROPA were significant for both volunteers and laboring women. AUCs for both volunteers and laboring women with numeric rating scale and visual analog scale subjective pain ratings as ground truth revealed at least good (AUC: 70%–79%) to excellent (AUC >90%) distinction between clinically meaningful pain severity differentiations (no/mild–moderate–severe).Conclusion: Cerebral Optical Spectrometry-based ROPA significantly correlated with subjectively reported pain in volunteers and laboring women, and could be a useful monitor for clinical circumstances where direct assessment is not available, or to complement patient-reported pain scores. Keywords: pain, assessment, objective, subjective, quantification, cerebral optical spectrometr

    CEACAM20 expression in normal and malignant prostate.

    No full text
    <p><b>A</b>. RT-PCR analysis for CEACAM20 of three prostate tumors including normal and malignant tissue with PBMCs as a control. <b>B</b>. Western blot analysis of the same tissues with anti-CEACAM20 monoclonal antibody 6G4A5 with anti- β-actin as a control. Immunohistochemistry staining of normal (<b>C</b>) and malignant (<b>D</b>) prostate with anti-CEACAM20 mAb, scale bar: 20 µm.</p

    CEACAM1 and CEACAM20 expression hPrECs.

    No full text
    <p>Detection of CEACAM1 (<b>A</b>) and CEACAM20 in hPrEC and CEACAM20 transfected HEK293 cells (<b>B</b>) by RT-PCR. Western Blot analysis of CEACAM1 in CEACAM1 transfected MCF7 mammary cells and in hPrEC cells (<b>C</b>). Western blot analysis of hPrEC cells (<b>D</b>). Detection of CEACAM1 (<b>E</b>) and CEACAM20) in hPrEC cells by flow cytometry analysis, mouse-anti-human IgG1 was used as the isotype control.</p

    Phenotype analysis of hPrECs grown on plastic.

    No full text
    <p>(<b>A</b>) PCR analysis for CK8, CK18, CK5, CK14, AR, PSA, PAP, CD133 and PSCA. (<b>B</b>) Western blot analysis for CK18, CK5, CK14 and PAP. (<b>C</b>) FACS analysis for CK8/18, AR, PSA, PAP, CD56, CD133, CD44 and α<sub>2</sub>β<sub>1</sub> integrin.</p

    Role of CEACAM1 and CEACAM20 in an In Vitro Model of Prostate Morphogenesis

    Get PDF
    <div><p>CEACAM20, a novel member of the CEACAM1 gene family with expression limited to the lumen of small intestine, testes, and prostate, is co-expressed with CEACAM1 in adult prostate tissue and down-regulated to the same extent as CEACAM1 in prostate cancer. Since prostate cancer often involves loss of epithelial lumen formation, we hypothesized that CEACAM20 and CEACAM1 play important roles in lumen formation of normal prostate epithelium. When prostate cells were grown on Matrigel as a source of extracellular matrix (ECM), they differentiated into acinar structures with single tubules and well-defined lumina closely resembling embryonic prostate organoids. Confocal microscopic analysis revealed restriction of CEACAM20 to acini and CEACAM1 to tubule structures, respectively. Inhibition of CEACAM1 with antibodies or soluble CEACAM1 or antisense oligonucleotides inhibited tubule formation by over 50% while the remaining tubules were stunted. Inhibition of CEACAM20 with antisense oligonucleotides completely inhibited tubule formation and stunted the growth of acini. We conclude that CEACAM20 and CEACAM1 not only mark the lumina of adult prostate tissue but also play a critical role in the vitro generation of prostate organoids.</p> </div
    corecore