15 research outputs found
The Origin of (90) Antiope From Component-Resolved Near-Infrared Spectroscopy
The origin of the similary-sized binary asteroid (90) Antiope remains an
unsolved puzzle. To constrain the origin of this unique double system, we
recorded individual spectra of the components using SPIFFI, a near-infrared
integral field spectrograph fed by SINFONI, an adaptive optics module available
on VLT-UT4. Using our previously published orbital model, we requested
telescope time when the separation of the components of (90) Antiope was larger
than 0.087", to minimize the contamination between components, during the
February 2009 opposition. Several multi-spectral data-cubes in J band (SNR=40)
and H+K band (SNR=100) were recorded in three epochs and revealed the two
components of (90) Antiope. After developing a specific photometric extraction
method and running an error analysis by Monte-Carlo simulations, we
successfully extracted reliable spectra of both components from 1.1 to 2.4 um
taken on the night of February 21, 2009. These spectra do not display any
significant absorption features due to mafic mineral, ices, or organics, and
their slopes are in agreement with both components being C- or Cb- type
asteroids. Their constant flux ratio indicates that both components' surface
reflectances are quite similar, with a 1-sigma variation of 7%. By comparison
with 2MASS J, H, K color distribution of observed Themis family members, we
conclude that both bodies were most likely formed at the same time and from the
same material. The similarly-sized system could indeed be the result of the
breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other
scenarios of formation implying a common origin should also be considered.Comment: 46 pages, 1 table, 11 figures accepted for publication to Icaru
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions
Under modern conditions, sediments from the large continental shelves of the Arctic Ocean are mixed by currents, incorporated into sea ice and redistributed over the Arctic Basin through the Beaufort Gyre and Trans-Polar Drift major sea-ice routes. Here, compiling data from the literature and combining them with our own data, we explore how radiogenic isotopes (Sr, Pb and Nd) from Arctic shelf surface sediment can be used to identify inland and coastal sediment sources. Based on discriminant function analyses, the use of two-isotope systematics introduces a large uncertainty (ca. 50%) that prevents unequivocal identifications of regional shelf signatures. However, when using all three isotopic systems, shelf provinces can be distinguished within a ca. 23% uncertainty only, which is mainly due to isotopic overlaps between the Canadian Arctic Archipelago and the Barents–Kara seas areas. Whereas the Canadian Arctic shelf seems mostly influenced by Mackenzie River supplies, as documented by earlier studies, a clear Lena River signature cannot be clearly identified in the Laptev–Kara seas area. The few available data on sediments collected in sea-ice rafts suggest sea ice originating mostly from the Laptev Sea area, along with non-negligible contributions from the East Siberian and Kara seas. At last, whereas a clear radiogenic identity of the Mackenzie River in sediments can be identified in the Beaufort Sea margin, isotopic signatures from major Russian rivers cannot be deciphered in modern Siberian margin sediments because of an intense mixing by sea ice and currents of inland and coastal supplies