697 research outputs found
Transmission Shifts Underlie Variability in Population Responses to Yersinia pestis Infection
Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.e., enzootic dynamics). Much of the work to understand this variability has focused on specific host characteristics, such as population size and resistance, and their role in determining plague dynamics. Here, however, we advance the idea that the relative importance of alternative transmission routes may vary causing shifts from epizootic to enzootic dynamics. We present a model that incorporates host and flea ecology with multiple transmission hypotheses to study how transmission shifts determine population responses to plague. Our results suggest enzootic persistence relies on infection of an off-host flea reservoir and epizootics rely on transiently maintained flea infection loads through repeated infectious feeds by fleas. In either case, early-phase transmission by fleas (i.e., transmission immediately following an infected blood meal) has been observed in laboratory studies, and we show that it is capable of driving plague dynamics at the population level. Sensitivity analysis of model parameters revealed that host characteristics (e.g., population size and resistance) vary in importance depending on transmission dynamics, suggesting that host ecology may scale differently through different transmission routes enabling prediction of population responses in a more robust way than using either host characteristics or transmission shifts alone
Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus
Plague is a flea-borne rodent-associated zoonotic disease that is caused by Yersinia pestis and characterized by long quiescent periods punctuated by rapidly spreading epidemics and epizootics. How plague bacteria persist during inter-epizootic periods is poorly understood, yet is important for predicting when and where epizootics are likely to occur and for designing interventions aimed at local elimination of the pathogen. Existing hypotheses of how Y. pestis is maintained within plague foci typically center on host abundance or diversity, but little attention has been paid to the importance of flea diversity in enzootic maintenance. Our study compares host and flea abundance and diversity along an elevation gradient that spans from low elevation sites outside of a plague focus in the West Nile region of Uganda (∼725–1160 m) to higher elevation sites within the focus (∼1380–1630 m). Based on a year of sampling, we showed that host abundance and diversity, as well as total flea abundance on hosts was similar between sites inside compared with outside the plague focus. By contrast, flea diversity was significantly higher inside the focus than outside. Our study highlights the importance of considering flea diversity in models of Y. pestis persistence
Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period
<p>Abstract</p> <p>Background</p> <p>Traditionally, efficient flea-borne transmission of <it>Yersinia pestis</it>, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of <it>Xenopsylla cheopis </it>with a wild type strain of <it>Y. pestis </it>and maintained them at 10, 23, 27, or 30°C. Naïve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using <it>Y. pestis</it>-specific antigen or antibody detection assays on mouse tissues.</p> <p>Results</p> <p>Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted <it>Y. pestis </it>infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures.</p> <p>Conclusions</p> <p>Our results suggest that temperature does not significantly effect the per flea efficiency of <it>Y. pestis </it>transmission by <it>X. cheopis</it>, but that temperature is likely to influence the dynamics of <it>Y. pestis </it>flea-borne transmission, perhaps by affecting persistence of the bacteria in the flea gut or by influencing flea survival. Whether <it>Y. pestis </it>biofilm production is important for transmission at different temperatures remains unresolved, although our results support the hypothesis that blockage is not necessary for efficient transmission.</p
MicroarrayDesigner: an online search tool and repository for near-optimal microarray experimental designs
<p>Abstract</p> <p>Background</p> <p>Dual-channel microarray experiments are commonly employed for inference of differential gene expressions across varying organisms and experimental conditions. The design of dual-channel microarray experiments that can help minimize the errors in the resulting inferences has recently received increasing attention. However, a general and scalable search tool and a corresponding database of optimal designs were still missing.</p> <p>Description</p> <p>An efficient and scalable search method for finding near-optimal dual-channel microarray designs, based on a greedy hill-climbing optimization strategy, has been developed. It is empirically shown that this method can successfully and efficiently find near-optimal designs. Additionally, an improved interwoven loop design construction algorithm has been developed to provide an easily computable general class of near-optimal designs. Finally, in order to make the best results readily available to biologists, a continuously evolving catalog of near-optimal designs is provided.</p> <p>Conclusion</p> <p>A new search algorithm and database for near-optimal microarray designs have been developed. The search tool and the database are accessible via the World Wide Web at <url>http://db.cse.ohio-state.edu/MicroarrayDesigner</url>. Source code and binary distributions are available for academic use upon request.</p
Metastatic renal cell cancer treatments: An indirect comparison meta-analysis
Abstract
Background
Treatment for metastatic renal cell cancer (mRCC) has advanced dramatically with understanding of the pathogenesis of the disease. New treatment options may provide improved progression-free survival (PFS). We aimed to determine the relative effectiveness of new therapies in this field.
Methods
We conducted comprehensive searches of 11 electronic databases from inception to April 2008. We included randomized trials (RCTs) that evaluated bevacizumab, sorafenib, and sunitinib. Two reviewers independently extracted data, in duplicate. Our primary outcome was investigator-assessed PFS. We performed random-effects meta-analysis with a mixed treatment comparison analysis.
Results
We included 3 bevacizumab (2 of bevacizumab plus interferon-a [IFN-a]), 2 sorafenib, 1 sunitinib, and 1 temsirolimus trials (total n = 3,957). All interventions offer advantages for PFS. Using indirect comparisons with interferon-α as the common comparator, we found that sunitinib was superior to both sorafenib (HR 0.58, 95% CI, 0.38–0.86, P = < 0.001) and bevacizumab + IFN-a (HR 0.75, 95% CI, 0.60–0.93, P = 0.001). Sorafenib was not statistically different from bevacizumab +IFN-a in this same indirect comparison analysis (HR 0.77, 95% CI, 0.52–1.13, P = 0.23). Using placebo as the similar comparator, we were unable to display a significant difference between sorafenib and bevacizumab alone (HR 0.81, 95% CI, 0.58–1.12, P = 0.23). Temsirolimus provided significant PFS in patients with poor prognosis (HR 0.69, 95% CI, 0.57–0.85).
Conclusion
New interventions for mRCC offer a favourable PFS for mRCC compared to interferon-α and placebo
Loss of ATRX in Chondrocytes Has Minimal Effects on Skeletal Development
BACKGROUND:Mutations in the human ATRX gene cause developmental defects, including skeletal deformities and dwarfism. ATRX encodes a chromatin remodeling protein, however the role of ATRX in skeletal development is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS:We induced Atrx deletion in mouse cartilage using the Cre-loxP system, with Cre expression driven by the collagen II (Col2a1) promoter. Growth rate, body size and weight, and long bone length did not differ in Atrx(Col2cre) mice compared to control littermates. Histological analyses of the growth plate did not reveal any differences between control and mutant mice. Expression patterns of Sox9, a transcription factor required for cartilage morphogenesis, and p57, a marker of cell cycle arrest and hypertrophic chondrocyte differentiation, was unaffected. However, loss of ATRX in cartilage led to a delay in the ossification of the hips in some mice. We also observed hindlimb polydactily in one out of 61 mutants. CONCLUSIONS/SIGNIFICANCE:These findings indicate that ATRX is not directly required for development or growth of cartilage in the mouse, suggesting that the short stature in ATR-X patients is caused by defects in cartilage-extrinsic mechanisms
The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review
PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75.
This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited
Differential Control of Yersinia pestis Biofilm Formation In Vitro and in the Flea Vector by Two c-di-GMP Diguanylate Cyclases
Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis
Relationship between gene co-expression and probe localization on microarray slides
BACKGROUND: Microarray technology allows simultaneous measurement of thousands of genes in a single experiment. This is a potentially useful tool for evaluating co-expression of genes and extraction of useful functional and chromosomal structural information about genes. RESULTS: In this work we studied the association between the co-expression of genes, their location on the chromosome and their location on the microarray slides by analyzing a number of eukaryotic expression datasets, derived from the S. cerevisiae, C. elegans, and D. melanogaster. We find that in several different yeast microarray experiments the distribution of the number of gene pairs with correlated expression profiles as a function of chromosomal spacing is peaked at short separations and has two superimposed periodicities. The longer periodicity has a spacing of 22 genes (~42 Kb), and the shorter periodicity is 2 genes (~4 Kb). CONCLUSION: The relative positioning of DNA probes on microarray slides and source plates introduces subtle but significant correlations between pairs of genes. Careful consideration of this spatial artifact is important for analysis of microarray expression data. It is particularly relevant to recent microarray analyses that suggest that co-expressed genes cluster along chromosomes or are spaced by multiples of a fixed number of genes along the chromosome
- …