4,649 research outputs found

    Particle Size Distribution in Aluminum Manufacturing Facilities.

    Get PDF
    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities

    Ischemic Heart Disease Incidence in Relation to Fine versus Total Particulate Matter Exposure in a U.S. Aluminum Industry Cohort.

    Get PDF
    Ischemic heart disease (IHD) has been linked to exposures to airborne particles with an aerodynamic diameter <2.5 μm (PM2.5) in the ambient environment and in occupational settings. Routine industrial exposure monitoring, however, has traditionally focused on total particulate matter (TPM). To assess potential benefits of PM2.5 monitoring, we compared the exposure-response relationships between both PM2.5 and TPM and incidence of IHD in a cohort of active aluminum industry workers. To account for the presence of time varying confounding by health status we applied marginal structural Cox models in a cohort followed with medical claims data for IHD incidence from 1998 to 2012. Analyses were stratified by work process into smelters (n = 6,579) and fabrication (n = 7,432). Binary exposure was defined by the 10th-percentile cut-off from the respective TPM and PM2.5 exposure distributions for each work process. Hazard Ratios (HR) comparing always exposed above the exposure cut-off to always exposed below the cut-off were higher for PM2.5, with HRs of 1.70 (95% confidence interval (CI): 1.11-2.60) and 1.48 (95% CI: 1.02-2.13) in smelters and fabrication, respectively. For TPM, the HRs were 1.25 (95% CI: 0.89-1.77) and 1.25 (95% CI: 0.88-1.77) for smelters and fabrication respectively. Although TPM and PM2.5 were highly correlated in this work environment, results indicate that, consistent with biologic plausibility, PM2.5 is a stronger predictor of IHD risk than TPM. Cardiovascular risk management in the aluminum industry, and other similar work environments, could be better guided by exposure surveillance programs monitoring PM2.5

    Laser pulse annealing of ion-implanted GaAs

    Get PDF
    GaAs single-crystals wafers are implanted at room temperature with 400-keV Te + ions to a dose of 1×10^15 cm^–2 to form an amorphous surface layer. The recrystallization of this layer is investigated by backscattering spectrometry and transmission electron microscopy after transient annealing by Q-switched ruby laser irradiation. An energy density threshold of about 1.0 J/cm^2 exists above which the layer regrows epitaxially. Below the threshold the layer is polycrystalline; the grain size increases as the energy density approaches threshold. The results are analogous to those reported for the elemental semiconductors, Si and Ge. The threshold value observed is in good agreement with that predicted by the simple model successfully applied previously to Si and Ge

    Tropical Australian health-data linkage shows excess mortality following severe infectious disease is present in the short-term and long-term after hospital discharge

    Get PDF
    Background: In this study, we aimed to assess the risk factors associated with mortality due to an infectious disease over the short-, medium-, and long-term based on a data-linkage study for patients discharged from an infectious disease unit in North Queensland, Australia, between 2006 and 2011. Methods: Age-sex standardised mortality rates (SMR) for different subgroups were estimated, and the Kaplan-Meier method was used to estimate and compare the survival experience among different groups. Results: Overall, the mortality rate in the hospital cohort was higher than expected in comparison with the Queensland population (SMR: 15.3, 95%CI: 14.9–15.6). The long-term mortality risks were significantly higher for severe infectious diseases than non-infectious diseases for male sex, Indigenous, residential aged care and elderly individuals. Conclusion: In general, male sex, Indigenous status, age and comorbidity were associated with an increased hazard for all-cause death

    Incident Ischemic Heart Disease After Long-Term Occupational Exposure to Fine Particulate Matter: Accounting for 2 Forms of Survivor Bias.

    Get PDF
    Little is known about the heart disease risks associated with occupational, rather than traffic-related, exposure to particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5). We examined long-term exposure to PM2.5 in cohorts of aluminum smelters and fabrication workers in the United States who were followed for incident ischemic heart disease from 1998 to 2012, and we addressed 2 forms of survivor bias. Left truncation bias was addressed by restricting analyses to the subcohort hired after the start of follow up. Healthy worker survivor bias, which is characterized by time-varying confounding that is affected by prior exposure, was documented only in the smelters and required the use of marginal structural Cox models. When comparing always-exposed participants above the 10th percentile of annual exposure with those below, the hazard ratios were 1.67 (95% confidence interval (CI): 1.11, 2.52) and 3.95 (95% CI: 0.87, 18.00) in the full and restricted subcohorts of smelter workers, respectively. In the fabrication stratum, hazard ratios based on conditional Cox models were 0.98 (95% CI: 0.94, 1.02) and 1.17 (95% CI: 1.00, 1.37) per 1 mg/m(3)-year in the full and restricted subcohorts, respectively. Long-term exposure to occupational PM2.5 was associated with a higher risk of ischemic heart disease among aluminum manufacturing workers, particularly in smelters, after adjustment for survivor bias

    Bacteria isolated from Bengal cat (Felis catus × Prionailurus bengalensis) anal sac secretions produce volatile compounds potentially associated with animal signaling.

    Get PDF
    In social animals, scent secretions and marking behaviors play critical roles in communication, including intraspecific signals, such as identifying individuals and group membership, as well as interspecific signaling. Anal sacs are an important odor producing organ found across the carnivorans (species in the mammalian Order Carnivora). Secretions from the anal sac may be used as chemical signals by animals for behaviors ranging from defense to species recognition to signaling reproductive status. In addition, a recent study suggests that domestic cats utilize short-chain free fatty acids in anal sac secretions for individual recognition. The fermentation hypothesis is the idea that symbiotic microorganisms living in association with animals contribute to odor profiles used in chemical communication and that variation in these chemical signals reflects variation in the microbial community. Here we examine the fermentation hypothesis by characterizing volatile organic compounds (VOC) and bacteria isolated from anal sac secretions collected from a male Bengal cat (Felis catus × Prionailurus bengalensis), a cross between the domestic cat and the leopard cat. Both left and right anal sacs of a male Bengal cat were manually expressed (emptied) and collected. Half of the material was used to culture bacteria or to extract bacterial DNA and the other half was used for VOC analysis. DNA was extracted from the anal sac secretions and used for a 16S rRNA gene PCR amplification and sequencing based characterization of the microbial community. Additionally, some of the material was plated out in order to isolate bacterial colonies. Three taxa (Bacteroides fragilis, Tessaracoccus, and Finegoldia magna) were relatively abundant in the 16S rRNA gene sequence data and also isolated by culturing. Using Solid Phase Microextraction (SPME) gas chromatography-mass spectrometry (GC-MS), we tentatively identified 52 compounds from the Bengal cat anal sac secretions and 67 compounds from cultures of the three bacterial isolates chosen for further analysis. Among 67 compounds tentatively identified from bacterial isolates, 51 were also found in the anal sac secretion. We show that the bacterial community in the anal sac consists primarily of only a few abundant taxa and that isolates of these taxa produce numerous volatiles that are found in the combined anal sac volatile profile. Several of these volatiles are found in anal sac secretions from other carnivorans, and are also associated with known bacterial biosynthesis pathways. This is consistent with the fermentation hypothesis and the possibility that the anal sac is maintained at least in part to house bacteria that produce volatiles for the host

    PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data.

    Get PDF
    Microbial diversity is typically characterized by clustering ribosomal RNA (SSU-rRNA) sequences into operational taxonomic units (OTUs). Targeted sequencing of environmental SSU-rRNA markers via PCR may fail to detect OTUs due to biases in priming and amplification. Analysis of shotgun sequenced environmental DNA, known as metagenomics, avoids amplification bias but generates fragmentary, non-overlapping sequence reads that cannot be clustered by existing OTU-finding methods. To circumvent these limitations, we developed PhylOTU, a computational workflow that identifies OTUs from metagenomic SSU-rRNA sequence data through the use of phylogenetic principles and probabilistic sequence profiles. Using simulated metagenomic data, we quantified the accuracy with which PhylOTU clusters reads into OTUs. Comparisons of PCR and shotgun sequenced SSU-rRNA markers derived from the global open ocean revealed that while PCR libraries identify more OTUs per sequenced residue, metagenomic libraries recover a greater taxonomic diversity of OTUs. In addition, we discover novel species, genera and families in the metagenomic libraries, including OTUs from phyla missed by analysis of PCR sequences. Taken together, these results suggest that PhylOTU enables characterization of part of the biosphere currently hidden from PCR-based surveys of diversity

    Hospitalisations related to lower respiratory tract infections in Northern Queensland

    Get PDF
    Abstract Objective: To investigate the admission characteristics and hospital outcomes for patients admitted with lower respiratory tract infections (LRTI) in Northern Queensland. Methods: We perform a retrospective analysis of the data covering an 11‐year period, 2006–2016. Length of hospital stay (LOS) is modelled by negative binomial regression and heterogeneous effects are checked using interaction terms. Results: A total of 11,726 patients were admitted due to LRTI; 2,430 (20.9%) were of Indigenous descent. We found higher hospitalisations due to LRTI for Indigenous than non‐Indigenous patients, with a disproportionate increase in hospitalisations occurring during winter. The LOS for Indigenous patients was higher by 2.5 days [95%CI: ‐0.15; 5.05] than for non‐Indigenous patients. The average marginal effect of 17.5 [95%CI: 15.3; 29.7] implies that the LOS for a patient, who was admitted to ICU, was higher by 17.5 days. Conclusions: We highlighted the increased burden of LRTIs experienced by Indigenous populations, with this information potentially being useful for enhancing community‐level policy making. Implications for public health: Future guidelines can use these results to make recommendations for preventative measures in Indigenous communities. Improvements in engagement and partnership with Indigenous communities and consumers can help increase healthcare uptake and reduce the burden of respiratory diseases
    corecore