56 research outputs found

    Beta-Catenin Phosphorylated at Threonine 120 Antagonizes Generation of Active Beta-Catenin by Spatial Localization in trans-Golgi Network

    Get PDF
    The stability and subcellular localization of beta-catenin, a protein that plays a major role in cell adhesion and proliferation, is tightly regulated by multiple signaling pathways. While aberrant activation of beta-catenin signaling has been implicated in cancers, the biochemical identity of transcriptionally active beta-catenin (ABC), commonly known as unphosphorylated serine 37 (S37) and threonine 41 (T41) β-catenin, remains elusive. Our current study demonstrates that ABC transcriptional activity is influenced by phosphorylation of T120 by Protein Kinase D1 (PKD1). Whereas the nuclear β-catenin from PKD1-low prostate cancer cell line C4-2 is unphosphorylated S37/T41/T120 with high transcription activity, the nuclear β-catenin from PKD1-overexpressing C4-2 cells is highly phosphorylated at T120, S37 and T41 with low transcription activity, implying that accumulation of nuclear β-catenin alone cannot be simply used as a read-out for Wnt activation. In human normal prostate tissue, the phosphorylated T120 β-catenin is mainly localized to the trans-Golgi network (TGN, 22/30, 73%), and this pattern is significantly altered in prostate cancer (14/197, 7.1%), which is consistent with known down regulation of PKD1 in prostate cancer. These in vitro and in vivo data unveil a previously unrecognized post-translational modification of ABC through T120 phosphorylation by PKD1, which alters subcellular localization and transcriptional activity of β-catenin. Our results support the view that β-catenin signaling activity is regulated by spatial compartmentation and post-translational modifications and protein level of β-catenin alone is insufficient to count signaling activity

    Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells

    No full text
    Cell migration and invasion are largely dependent on the complex organization of the various cytoskeletal components. Whereas the role of actin filaments and microtubules in cell motility is well established, the role of intermediate filaments in this process is incompletely understood. Organization and structure of the keratin cytoskeleton, which consists of heteropolymers of at least one type 1 and one type 2 intermediate filament, are in part regulated by post-translational modifications. In particular, phosphorylation events influence the properties of the keratin network. Sphingosylphosphorylcholine (SPC) is a bioactive lipid with the exceptional ability to change the organization of the keratin cytoskeleton, leading to reorganization of keratin filaments, increased elasticity, and subsequently increased migration of epithelial tumor cells. Here we investigate the signaling pathways that mediate SPC-induced keratin reorganization and the role of keratin phosphorylation in this process. We establish that the MEK–ERK signaling cascade regulates both SPC-induced keratin phosphorylation and reorganization in human pancreatic and gastric cancer cells and identify Ser431 in keratin 8 as the crucial residue whose phosphorylation is required and sufficient to induce keratin reorganization and consequently enhanced migration of human epithelial tumor cells
    corecore