26 research outputs found

    The singular field used to calculate the self-force on non-spinning and spinning particles

    Get PDF
    The singular field of a point charge has recently been described in terms of a new Green's function of curved spacetime. This singular field plays an important role in the calculation of the self-force acting upon the particle. We provide a method for calculating the singular field and a catalog of expansions of the singular field associated with the geodesic motion of monopole and dipole sources for scalar, electromagnetic and gravitational fields. These results can be used, for example, to calculate the effects of the self-force acting on a particle as it moves through spacetime.Comment: 14 pages; addressed referee's comments; published in PhysRev

    Scalar field self-force effects on orbits about a Schwarzschild black hole

    Full text link
    For a particle of mass mu and scalar charge q, we compute the effects of the scalar field self-force upon circular orbits, upon slightly eccentric orbits and upon the innermost stable circular orbit of a Schwarzschild black hole of mass M. For circular orbits the self force is outward and causes the angular frequency at a given radius to decrease. For slightly eccentric orbits the self force decreases the rate of the precession of the orbit. The effect of the self force moves the radius of the innermost stable circular orbit inward by 0.122701 q^2/mu, and it increases the angular frequency of the ISCO by the fraction 0.0291657 q^2/mu M.Comment: 15 pages, 8 figure

    The impact of graph construction scheme and community detection algorithm on the reliability of community and hub identification in structural brain networks

    Get PDF
    A critical question in network neuroscience is how nodes cluster together to form communities, to form the mesoscale organisation of the brain. Various algorithms have been proposed for identifying such communities, each identifying different communities within the same network. Here, (using test–retest data from the Human Connectome Project), the repeatability of thirty-three community detection algorithms, each paired with seven different graph construction schemes were assessed. Repeatability of community partition depended heavily on both the community detection algorithm and graph construction scheme. Hard community detection algorithms (in which each node is assigned to only one community) outperformed soft ones (in which each node can belong to more than one community). The highest repeatability was observed for the fast multi-scale community detection algorithm paired with a graph construction scheme that combines nine white matter metrics. This pair also gave the highest similarity between representative group community affiliation and individual community affiliation. Connector hubs had higher repeatability than provincial hubs. Our results provide a workflow for repeatable identification of structural brain networks communities, based on the optimal pairing of community detection algorithm and graph construction scheme

    Optimization of graph construction can significantly increase the power of structural brain network studies

    Get PDF
    Structural brain networks derived from diffusion magnetic resonance imaging data have been used extensively to describe the human brain, and graph theory has allowed quantification of their network properties. Schemes used to construct the graphs that represent the structural brain networks differ in the metrics they use as edge weights and the algorithms they use to define the network topologies. In this work, twenty graph construction schemes were considered. The schemes use the number of streamlines, the fractional anisotropy, the mean diffusivity or other attributes of the tracts to define the edge weights, and either an absolute threshold or a data-driven algorithm to define the graph topology. The test-retest data of the Human Connectome Project were used to compare the reproducibility of the graphs and their various attributes (edges, topologies, graph theoretical metrics) derived through those schemes, for diffusion images acquired with three different diffusion weightings. The impact of the scheme on the statistical power of the study and on the number of participants required to detect a difference between populations or an effect of an intervention was also calculated. The reproducibility of the graphs and their attributes depended heavily on the graph construction scheme. Graph reproducibility was higher for schemes that used thresholding to define the graph topology, while data-driven schemes performed better at topology reproducibility (mean similarities of 0.962 and 0.984 respectively, for graphs derived from diffusion images with s/mm2). Additionally, schemes that used thresholding resulted in better reproducibility for local graph theoretical metrics (intra-class correlation coefficients (ICC) of the order of 0.8), compared to data-driven schemes. Thresholded and data-driven schemes resulted in high (0.86 or higher) ICCs only for schemes that use exclusively the number of streamlines to construct the graphs. Crucially, the number of participants required to detect a difference between populations or an effect of an intervention could change by a factor of two or more depending on the scheme used, affecting the power of studies to reveal the effects of interest

    Report on the first binary black hole inspiral search in LIGO data

    Full text link
    The LIGO Scientific Collaboration is currently engaged in the first search for binary black hole inspiral signals in real data. We are using the data from the second LIGO science run and we focus on inspiral signals coming from binary systems with component masses between 3 and 20 solar masses. We describe the analysis methods used and report on preliminary estimates for the sensitivities of the LIGO instruments during the second science run.Comment: 10 pages, 2 figures. Added references for section 2, corrected figure 1. To appear in CQG, in a special issue on the proceedings of the 9th Annual Gravitational Wave Data Analysis Workshop (GWDAW), Annecy, France, Dec. 200

    Improving the predictions of computational models of convection-enhanced drug delivery by accounting for diffusion non-gaussianity

    Get PDF
    Convection-enhanced delivery (CED) is an innovative method of drug delivery to the human brain, that bypasses the blood-brain barrier by injecting the drug directly into the brain. CED aims to target pathological tissue for central nervous system conditions such as Parkinson's and Huntington's disease, epilepsy, brain tumors, and ischemic stroke. Computational fluid dynamics models have been constructed to predict the drug distribution in CED, allowing clinicians advance planning of the procedure. These models require patient-specific information about the microstructure of the brain tissue, which can be collected non-invasively using magnetic resonance imaging (MRI) pre-infusion. Existing models employ the diffusion tensor, which represents Gaussian diffusion in brain tissue, to provide predictions for the drug concentration. However, those predictions are not always in agreement with experimental observations. In this work we present a novel computational fluid dynamics model for CED that does not use the diffusion tensor, but rather the diffusion probability that is experimentally measured through diffusion MRI, at an individual-participant level. Our model takes into account effects of the brain microstructure on the motion of drug molecules not taken into account in previous approaches, namely the restriction and hindrance that those molecules experience when moving in the brain tissue, and can improve the drug concentration predictions. The duration of the associated MRI protocol is 19 min, and therefore feasible for clinical populations. We first prove theoretically that the two models predict different drug distributions. Then, using in vivo high-resolution diffusion MRI data from a healthy participant, we derive and compare predictions using both models, in order to identify the impact of including the effects of restriction and hindrance. Including those effects results in different drug distributions, and the observed differences exhibit statistically significant correlations with measures of diffusion non-Gaussianity in brain tissue. The differences are more pronounced for infusion in white-matter areas of the brain. Using experimental results from the literature along with our simulation results, we show that the inclusion of the effects of diffusion non-Gaussianity in models of CED is necessary, if reliable predictions that can be used in the clinic are to be generated by CED models

    Dementia risk factors modify hubs but leave other connectivity measures unchanged in asymptomatic individuals: a graph theoretical analysis

    Get PDF
    Background: Alzheimer's Disease (AD) is the most common form of dementia with genetic and environmental risk contributing to its development. Graph theoretical analyses of brain networks constructed from structural and functional MRI measurements have identified connectivity changes in AD and individuals with mild cognitive impairment (MCI). However, brain connectivity in asymptomatic individuals at risk of AD remains poorly understood. Methods: We acquired diffusion-weighted magnetic resonance imaging (dMRI) data from 160 asymptomatic individuals (38-71 years) from the Cardiff Ageing and Risk of Dementia Study (CARDS). We calculated white matter tracts and constructed whole-brain, default-mode-network and visual structural brain networks that incorporate multiple structural metrics as edge weights. We then calculated the relationship of three AD risk factors, namely Apolipoprotein-E ε4 genotype (APOE4), family history (FH) of dementia, and central obesity, on graph theoretical measures and hubs. Results: We observed no risk-related differences in clustering coefficients, characteristic path lengths, eccentricity, diameter and radius across the whole-brain, default-mode-network or visual system. However, a hub in the right paracentral lobule was present in all high-risk groups (FH, APOE4, obese) but absent in low-risk groups (no FH, APOE4-ve, healthy weight). Discussion: We identified no risk-related effects on graph theoretical metrics in the structural brain networks of cognitively healthy individuals. However, high-risk was associated with a hub in the right paracentral lobule, an area with motor and sensory functions related to the lower limb. If this phenotype is shown to predict symptom development in longitudinal studies, it could be used as an early biomarker of AD

    Improving the Predictions of Computational Models of Convection-Enhanced Drug Delivery by Accounting for Diffusion Non-gaussianity

    Get PDF
    Convection-enhanced delivery (CED) is an innovative method of drug delivery to the human brain, that bypasses the blood-brain barrier by injecting the drug directly into the brain. CED aims to target pathological tissue for central nervous system conditions such as Parkinson's and Huntington's disease, epilepsy, brain tumors, and ischemic stroke. Computational fluid dynamics models have been constructed to predict the drug distribution in CED, allowing clinicians advance planning of the procedure. These models require patient-specific information about the microstructure of the brain tissue, which can be collected non-invasively using magnetic resonance imaging (MRI) pre-infusion. Existing models employ the diffusion tensor, which represents Gaussian diffusion in brain tissue, to provide predictions for the drug concentration. However, those predictions are not always in agreement with experimental observations. In this work we present a novel computational fluid dynamics model for CED that does not use the diffusion tensor, but rather the diffusion probability that is experimentally measured through diffusion MRI, at an individual-participant level. Our model takes into account effects of the brain microstructure on the motion of drug molecules not taken into account in previous approaches, namely the restriction and hindrance that those molecules experience when moving in the brain tissue, and can improve the drug concentration predictions. The duration of the associated MRI protocol is 19 min, and therefore feasible for clinical populations. We first prove theoretically that the two models predict different drug distributions. Then, using in vivo high-resolution diffusion MRI data from a healthy participant, we derive and compare predictions using both models, in order to identify the impact of including the effects of restriction and hindrance. Including those effects results in different drug distributions, and the observed differences exhibit statistically significant correlations with measures of diffusion non-Gaussianity in brain tissue. The differences are more pronounced for infusion in white-matter areas of the brain. Using experimental results from the literature along with our simulation results, we show that the inclusion of the effects of diffusion non-Gaussianity in models of CED is necessary, if reliable predictions that can be used in the clinic are to be generated by CED models
    corecore