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Convection-enhanced delivery (CED) is an innovative method of drug delivery to the

human brain, that bypasses the blood-brain barrier by injecting the drug directly into

the brain. CED aims to target pathological tissue for central nervous system conditions

such as Parkinson’s and Huntington’s disease, epilepsy, brain tumors, and ischemic

stroke. Computational fluid dynamics models have been constructed to predict the drug

distribution in CED, allowing clinicians advance planning of the procedure. These models

require patient-specific information about the microstructure of the brain tissue, which

can be collected non-invasively using magnetic resonance imaging (MRI) pre-infusion.

Existing models employ the diffusion tensor, which represents Gaussian diffusion in brain

tissue, to provide predictions for the drug concentration. However, those predictions

are not always in agreement with experimental observations. In this work we present

a novel computational fluid dynamics model for CED that does not use the diffusion

tensor, but rather the diffusion probability that is experimentally measured through

diffusion MRI, at an individual-participant level. Our model takes into account effects

of the brain microstructure on the motion of drug molecules not taken into account

in previous approaches, namely the restriction and hindrance that those molecules

experience when moving in the brain tissue, and can improve the drug concentration

predictions. The duration of the associated MRI protocol is 19 min, and therefore feasible

for clinical populations. We first prove theoretically that the two models predict different

drug distributions. Then, using in vivo high-resolution diffusion MRI data from a healthy

participant, we derive and compare predictions using both models, in order to identify

the impact of including the effects of restriction and hindrance. Including those effects

results in different drug distributions, and the observed differences exhibit statistically

significant correlations with measures of diffusion non-Gaussianity in brain tissue. The
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differences are more pronounced for infusion in white-matter areas of the brain. Using

experimental results from the literature along with our simulation results, we show that

the inclusion of the effects of diffusion non-Gaussianity in models of CED is necessary, if

reliable predictions that can be used in the clinic are to be generated by CED models.

Keywords: convection-enhanced drug delivery, diffusion MRI, non-Gaussian diffusion, neurodegenerative

diseases, computational fluid dynamics, Parkinson’s disease, Huntington’s disease, epilepsy

1. INTRODUCTION

Convection-enhanced delivery (CED) is an innovative method

of drug delivery to the human brain that aims to increase the

efficiency of drug treatment for many disorders of the central
nervous system. The innovation of the technique lies in the

fact that, instead of being delivered through the bloodstream,
the drug is infused directly into the brain tissue via catheters
implanted in the brain, while a constant pressure is applied at
the tip of the catheter. CED is very invasive and requires constant
monitoring of the patient during the infusion. At the same time,
it allows clinicians to bypass the blood-brain barrier that can
inhibit the reach of large-macromolecule drugs to the pathology,
it results in the drug reaching an extended volume within a few
hours of infusion, and it limits the drug concentration in healthy
tissue, thus limiting the drug-related side effects that the patient
can suffer (1, 2). CED was studied experimentally in animals as
early as the 1990s (3, 4) and later (5), and a theoretical model for it
was first proposed in 1994 (6). More recently, CED has been used
on patients that suffer from brain tumors (7–10), epilepsy (1), and
Parkinson’s disease (PD) (2). The method also presents potential
for use in Huntington’s disease (HD), Alzheimer’s disease (AD)
(2), and ischemic stroke (11). Studies that aim at monitoring the
distribution of the drug in real time through magnetic resonance
imaging (MRI) have also taken place (9, 12). A thorough review
of the scope, technology and proposed developments of CED was
presented by Raghavan et al. (13).

In order for CED to be effective, clinicians need to know
the initial catheter setup (the catheter location and the velocity
and pressure of infusion of the drug) that will allow the drug to
cover the entirety of the pathology in question while minimizing
dose to healthy brain tissue. To that end, computational fluid
dynamics (CFD) models that predict the drug’s distribution in
the brain for a given initial catheter setup have been developed.
CFD models that rely on different metrics for brain tissue
characterization or which assume different mechanisms for
the movement of drug molecules would predict different drug
distributions for the same initial catheter setup. Inversely, to
achieve a desired drug distribution, different CFD models would
advocate different initial catheter setups. Accurate models are
therefore needed to correctly inform the catheter setup to be
used in the clinical setting. Computational models have been
developed by various groups to predict the drug distribution
resulting from CED in rabbit brain (14, 15), in pig brain (5),
in rat spinal cord (16–18), in tumor animal models (19, 20),
and in the human brain (21, 22). In all these studies it is
important to account for all details of the tissue microstructure

that affect the motion of the drug molecules, in order to provide
accurate predictions that eliminate the uncertainty in targeting
the structures of interest.

Modeling CED is inherently challenging because the
drug moves in the anisotropic and heterogeneous brain
tissue, and that anisotropy and heterogeneity needs to be
accurately reflected in the CFD models through appropriate
microstructural representations. MRI and diffusion-MRI
(dMRI) allow non-invasive imaging of the human brain. The
CFD models in the previously mentioned studies use the
diffusion tensor (DT) (23), measured through dMRI, to map
the brain microstructure. However, even though the DT is a
powerful tool for studying microstructure in the human brain
(24, 25), it only encompasses Gaussian diffusion for the water
molecules (26–30). This limitation needs to be considered
carefully when modeling CED, because the non-Gaussian
character of diffusion that is evidenced in the motion of water
molecules in the brain, and which includes phenomena observed
in vivo such as restriction and hindrance, will also affect the drug
molecules.

In this work, we use a theoretical fluid dynamics model that
was recently presented in the literature (31, 32) to develop a
CFD model that overcomes the limitations of the DT approach
and improves the predictions of the concentration of drugs
infused through CED into brain tissue by accounting for
phenomena not included in the DT representation. In contrast
to CFD models that use the DT, our new framework uses the
diffusion displacement covariance tensor of water molecules in
the brain to predict how the drug molecules will move in the
brain tissue. This captures the second-order effects of restricted
and hindered diffusion that molecules can experience in brain
tissue, that are not represented by the DT (30). Importantly,
we prove theoretically that the predictions given by our more
comprehensive model differ significantly from those given by the
model that uses the DT. We then use human high-resolution
diffusion MRI data to perform CFD simulations of drug delivery
using both models and quantify those differences. In section 2,
we present our new theoretical framework for constructing
the new CED fluid dynamics model, and detail the differences
between this framework and that reported previously in the
literature. We also describe the details of the MR protocol,
the data processing and the calculation of the microstructural
parameters needed in our CFD model. In section 3 we compare
the microstructural measures used by the two different CFD
models, present the results that the models give for the drug
concentration in the human brain for different infusion sites
and compare those results. We also present evidence from
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existing literature that accounting for diffusion non-Gaussianity
can improve the predictions of CED models. In section 4 we
discuss the results and give some directions for future work. The
detailed theoretical derivation of the CFD framework is presented
in Appendix A.

2. MATERIALS AND METHODS

2.1. Fluid Dynamics Models
In this section we describe the equations of the fluid dynamics
model that is the basis of the novel CFD model we use.

2.1.1. Proposed Formalism
Berkowitz et al. (31) presented a framework that describes the
movement of fluidmolecules under the influence of diffusion and
convection, consisting of the equations:

∇ · v(r) = 0 (1)

v(r) = −T(r)∇p(r) (2)

ϕ(r)
∂C(r, t)

∂t
= −∇ ·

[

v(r)C(r, t)
]

+∇ ·
[

ϕ(r)R(r) ·∇C(r, t)
]

(3)

where v(r) is the drug velocity at location r, p(r) is the pressure at
r, and C(r, t) is the drug concentration at r at time t. The tensor
R(r) is given by (31):

R(r) =
1

2

∑

r′

wd(r, r
′)(r′ − r)(r′ − r) (4)

where wd(r, r
′) is the transition rate of a fluid molecule from

position r to position r′ in a given time due to diffusion only. The
tensor T(r) is an effective permeability tensor and is related to the
tensor R(r) by the equation (31):

T(r) ≡
R(r)

λ̂
. (5)

In this equation, λ̂ is a factor that gives the relative scale
of the diffusion vs. the convection process, for the porous
medium in which the fluid is moving. These equations are
derived by considering the transition of fluid molecules between
neighboring points of the porous medium due to diffusion
and convection, and then Taylor-expanding the transition rate
and the pressure difference between those points to second
order in their distance. The first term on the right-had side of
Equation (3) is the convection contribution, while the second
term on the right-hand side is the diffusion contribution. The
detailed derivation of these equations is given in Appendix A of
this paper as it was originally presented by Berkowitz et al. (31).

2.1.2. Diffusion-Tensor-Based Formalism
The equations that have been previously used in the literature
((16, 17), etc.) to describe the motion of a fluid in brain tissue
due to diffusion and convection are:

∇ · v(r) = 0 (6)

v(r) = −K(r)∇p(r) (7)

ϕ(r)
∂C(r, t)

∂t
= −∇·

[

v(r)C(r, t)
]

+∇·
[

ϕ(r)D(r)·∇C(r, t)
]

, (8)

Equation (6) is the continuity equation, and Equation (7) is
Darcy’s law that relates the fluid velocity to the pressure gradient.
Equation (8) is the fluid transport equation, in which the first
term of the right-hand side is the convection contribution to
the rate of change of the concentration, while the second term
is the diffusion contribution. D(r) is the drug diffusion tensor
(DT), derived by appropriately calibrating the water DT (22, 33).
The water DT, Dw(r), can be measured through dMRI (23) and
provides a measure of how far and in what direction the water
molecules in brain tissue will move due to diffusion, under the
assumption of Gaussian diffusion. It can be calculated through
the equation

Sk = S0e
−bgTkDwgk (9)

where S0 is the MR signal with no diffusion weighting, Sk is the
signal when a diffusion weighting gradient gk has been applied,
and b is the strength of the diffusion weighting [for more details
on dMRIwe refer the reader to the plethora of relevant papers, for
example (23, 34–36) and references therein.]K(r) is the hydraulic
conductivity tensor of the drug, which can also be derived by
appropriate calibration of the water DT (22, 33), and ϕ(r) is the
porosity of the tissue.

In the following, we refer to the model that employs the DT
as the D-model and the model that employs the tensor R as the
R-model.

2.1.3. Differences Resulting From Considering the

Effects of Non-Gaussianity
The transport Equations (3) and (8) indicate that there
are differences between the concentration predicted when
accounting for diffusion non-Gaussianity to that predicted by
the simpler model that only encompasses Gaussian diffusion.
By rewriting those equations using the subscripts “R” and “D”
to indicate the model the quantities refer to, and skipping the
explicit time and spatial dependence for notational clarity, we get:

ϕ
∂CR

∂t
= −∇ ·

(

vRCR

)

+ ∇ ·
(

ϕR · ∇CR

)

(10)

and

ϕ
∂CD

∂t
= −∇ ·

(

vDCD

)

+ ∇ ·
(

ϕD · ∇CD

)

. (11)

Subtracting the two equations and setting 1C = CR − CD and
1v = vR − vD, we get

ϕ
∂(1C)

∂t
+ ∇ ·

(

vR1C
)

− ∇
[

ϕR · ∇(1C)
]

= −∇ ·
(

1v · CD

)

+ ∇ ·
[

ϕ(R−D) · ∇CD

]

. (12)

Equation (12) is a time evolution equation for the difference in
concentrations. Both terms on the right-hand side of the equation
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are proportional to the divergence of the difference R − D. This
equation conveys the fact that the concentration predicted by
the R-model differs from that predicted by the D-model, and the
difference depends on several parameters, such as the duration
of infusion, the location under consideration, and how far and in
what direction that location is in relation to the infusion site. The
equation also conveys the complexity of the dependence of the
difference in concentration in those parameters. For example, it is
clear that the difference between the tensors R and D will impact
1C. Specifically, for any given location of interest in the brain,
it will be the cumulative difference of those tensors from the
infusion point to the location of interest for all the paths that the
fluid molecules follow between those two points that will impact
1C. Also, the fact that 1C evolves with time implies that any
given brain location will be impacted differently at different times
during the infusion process. While the main aim of our work
is to provide a CFD model that gives predictions that are more
accurate than existing ones by accounting for all the phenomena
that affect the motion of the drug molecules, quantifying the
differences predicted by Equation (12) and understanding the
implications they have on the clinical practice of CED is the
additional scope of this manuscript.

From a physics perspective, the difference between the two
formalisms lies in the assumptions made about the diffusion and
convection processes in brain tissue. In the former framework,
the DT represents Gaussian diffusion. However, as explained
earlier, diffusion in brain tissue is predominantly not Gaussian
(26–30). By employing the tensor R we incorporate the second-
order effects of the restricted and hindered diffusion in this
analysis. These effects are evident in the diffusion of water
molecules, as will become clear by comparing the tensors D

and R in section 3.1, and will also affect the drug molecules.
Importantly, these differences affect not only the diffusion
process during CED, but also the convection process, since the
tensors K and T that relate the velocity to the pressure difference
are proportional to the tensors D and R, respectively. In other
words, by better modeling the restriction and hindrance that
the molecules would encounter in their diffusive motion, we are
also improving the modeling of the convective motion of the
molecules.

2.2. Calculation of the Tensors
The new framework presented in this work requires calculation
of the tensor R(r) for the diffusing motion of the drug molecules
in the anisotropic brain tissue. The sum in Equation (4) is over all
possible r′. Converting the sum to an integral we have:

R(r) =
1

2

1

dV

∫

R3
wd(r, r

′)(r′ − r)(r′ − r)dr′. (13)

The rate wd(r, r
′) that is required for the computation of the

tensor R(r) is equal to the proportion of particles that start at
position r and reach r′ exclusively due to the diffusion process,
in the diffusion time 1, divided by the time 1. A quantity that
is related to this rate and is measurable through dMRI is the
diffusion propagator P(r|r′,1) (34, 37, 38).

If we assume that at time 0 there are N particles at r and that a
time 1 later Nr,r′ of those particles reach r′, then the propagator

(probability that a molecule at r will reach r′ in the diffusion time
1) is

P(r|r′,1) =
Nr,r′

N

1

dV
. (14)

The diffusion-induced transition rate at which particles arrive at
r′ from r is equal to the proportion of particles that arrive at r′

from r in the diffusion time 1. Therefore,

wd(r, r
′) =

Nr,r′

N

1

1
= P(r|r′,1)

dV

1
. (15)

Using this expression for the transition rate in Equation (13) we
get:

R(r) =
1

21

∫

R3
P(r|r′,1)(r′ − r)(r′ − r)dr′. (16)

The tensor R, therefore, captures the covariance of the diffusion
displacement. This tensor’s eigenvectors determine the principal
diffusion directions in the porous medium and its diagonal
elements are the mean-squared displacements along the x, y, and
z directions, respectively. As such, the formalism captures all
forms of diffusive displacements, not just those captured by the
DT formalism, and that is a direct consequence of the fact that the
probability that the molecules will move along a given direction
is experimentally measured.

Following Tuch et al. (33), we can calculate this tensor for
the drug of interest by appropriate calibration of the equivalent
tensor for water, as will be described in section 2.3.2. The
covariance matrix of the diffusion displacement of the water
has been proposed as a useful measure for characterizing brain
microstructure (39, 40). Here we use the method proposed by
Ning et al. (39) for calculating R, which uses Gaussian radial
basis functions. For a detailed description of the methodology,
we refer the reader to that paper (39). We will present details on
the characteristics of the tensor R in section 3.1.

The calculation of the tensor T is straightforward once R has
been calculated and entails a calibration of the tensor R in the
same way that K is calibrated fromD (22).

2.3. Scanning, Data Processing, and
Microstructural Metrics
2.3.1. MR Scanning and Preprocessing
A healthy participant (age range 26–30 years) was scanned in
order to obtain the MR data used in our analysis. The participant
gave informed written consent and all procedures were approved
by the local ethics committee.

The MRI data were acquired at the Cardiff University
Brain Research Imaging Centre (CUBRIC) on a 3T Siemens
Connectom scanner with 300 mT/m gradients. The scanning
session consisted of a T1-weighted scan and a high angular
resolution diffusion imaging (HARDI) scan. The T1-weighted
scan used the MPRAGE sequence (41) with parameters: TR = 2.3
s, TE = 2.2 ms, TI = 850 ms, field of view 256× 256× 192 mm3,
and isotropic resolution of 1 mm3. The HARDI scan (42) used
a multiband-EPI diffusion sequence on two shells, b = 1, 200
s/mm2 and b = 2, 400 s/mm2, with 61 isotropically-distributed
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TABLE 1 | MR scanning parameters.

MR sequence Parameter Value

MPRAGE TR 2.3 s

TE 2.2 ms

TI 850 ms

FOV 256× 256× 192 mm3

Resolution 1 mm isotropic

HARDI b-values 1, 200 and 2, 400 s/mm2

Gradient directions per b-shell 61

TR 6.2 s

TE 63 ms

FOV 216× 216× 132 mm3

Resolution 1.2 mm isotropic

diffusion gradient directions for each shell, TR = 6.2 s, TE = 63
ms, field of view 216× 216× 132 mm3, and isotropic resolution
of (1.2mm)3. In the diffusion data, there were 180 coronal slices,
180 sagittal slices, and 110 axial slices. In order to make the
Figures in subsequent sections clear, we note that we coronal
slices increase in number from anterior to posterior, the sagittal
slices from left to right and the axial slices from bottom to top.
The total scanning time was 19 min.

The diffusion-weighted HARDI data were corrected for
distortions induced by the diffusion-weighted gradients, gradient
non-linearity, artifacts due to head motion, and due to EPI-
induced geometrical distortions. The diffusion images were
co-registered to the T1-weighted image, after down-sampling
the latter to the diffusion-weighted data. The MR scanning
parameters are listed in Table 1.

We used the FSL package (43, 44) to perform brain extraction
and to identify voxels that contain predominantly gray matter
(GM), white matter (WM), or cerebrospinal fluid (CSF).

2.3.2. Calculation of the DT and of R
To calculate the tensors R and D for water we followed
the method described by Ning et al. (39) and used the
code provided by them at https://github.com/LipengNing/RBF-
Propagator, appropriately adapted for our dataset. It was
explained in section 2.1 that, in contrast to Dw which represents
Gaussian diffusion, the tensor Rw uses the MR-measured
probability of diffusion in all directions thus incorporating the
second-order effects of restricted and hindered diffusion. Two
qualities of the tensors were expected to affect how the drug
distributions resulting from the two frameworks compare with
each other: (a) the actual values of the components of the two
tensors, which determine how quickly the drug spreads, with
higher values resulting in faster spread of the drug, and (b) the
anisotropies of the two tensors, which determine howmuch drug
will spread along each direction. For that reason, we compared
the values of the corresponding components of the two tensors,
their fractional anisotropies (FA) and their mean diffusivities
(MD). In order to compare the range of the diffusion process as
predicted by each of the two tensors Rw and Dw, we calculated

the ratio of their traces Tr(Rw)/Tr(Dw) for each voxel, noting
that the ratio provides information about the relative ranges of
the diffusive motion of the water molecules in a given voxel,
without conveying any information about the range in that voxel
in comparison to the range in other voxels.

Both these tensors were calculated for the water molecules,
and therefore a calibration procedure was needed to convert
them to the tensors that describe the movement of drug
molecules, as is explained in Linninger et al. (22). There is
uncertainty in the specific values that these tensors assume in
the human brain, as discussed in Stoverud et al. (45). In this
work we followed the method described in Linninger et al.
(22) and Stoverud et al. (45), which is based on the work
of Avellaneda and Torquato (46), to perform the required
calibration. Specifically, we first decomposed the water diffusion
tensor into its eigenvectors ξ and eigenvalues λi, i = 1, 2, 3, for
each voxel:

Dw = ξD · 3D · ξTD (17)

where

3D =





λD1 0 0

0 λD2 0

0 0 λD3



 . (18)

Then we rescaled the eigenvalues by their average λ̄D = 1
3 (λ

D
1 +

λD2 + λD3 ), to get λ̄
D
i = λDi /λ̄D and

3̄D =





λ̄D1 0 0

0 λ̄D2 0

0 0 λ̄D3



 . (19)

Similarly, decomposing the tensor Rw:

Rw = ξR · 3R · ξTR (20)

where

3R =





λR1 0 0

0 λR2 0

0 0 λR3



 , (21)

and after rescaling the eigenvalues by their average λ̄R = 1
3 (λ

R
1 +

λR2 + λR3 ), we got λ̄
R
i = λRi /λ̄R and

3̄R =





λ̄R1 0 0

0 λ̄R2 0

0 0 λ̄R3



 . (22)

The drug diffusion tensor was then calculated as

Ddrug = Dcal ξD · 3̄D · ξTD (23)

where Dcal is a calibration factor and the subscripts and
superscripts D indicate quantities that refer to the DT. Similarly
for the other tensors:

Kdrug = Kcal ξD · 3̄D · ξTD (24)
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Rdrug = Dcal ξR · 3̄R · ξTR (25)

Tdrug = Kcal ξR · 3̄R · ξTR (26)

where the subscripts R indicate that the quantities refer to the
tensor R. The calibration factors Dcal and Kcal are estimated
from experimental data, as described in Linninger et al. (22). In
accordance with Linninger et al. (22) and Stoverud et al. (45) we
set Dcal = 10−12. We used different values for Kcal in GM and
WM (22, 45). Specifically, we used KWM

cal
= 1.3 × 10−12 in WM

and KGM
cal

= 0.013× 10−12 in GM, reflecting the fact that motion
of the fluid inWM can be up to 100 times faster than in GM. This
procedure guaranteed that the tensors derived for the drug have
the same eigenvectors as Dw and Rw, respectively. Finally, we set
the porosity of GM to be 0.21 and that of WM to be 0.19, as in
Linninger et al. (22).

2.4. CFD Modeling
2.4.1. Mesh
We used finite element methods to solve Equations (1–3) and
(6–8). Tetrahedral meshes have been previously used to solve
these equations numerically (21, 22). However, it was shown
by Kim et al. (18) that using a voxelized mesh, namely a mesh
in which the elements coincide with the voxels resulting from
MR imaging, results in predictions that are in agreement with
experimental results, provided that the voxels are small enough
to capture the anisotropy of the microstructure that affects the
motion of the drug molecules. This early work was performed on
rat spinal cord. It was later shown that there is high correlation
between the results obtained with a voxelized mesh and those
obtained with an unstructured tetrahedral mesh for the case of
drug infusion in the brain of tumor patients (19). Finally, it was
shown that the predictions for the concentration when using a
voxelized mesh to model drug delivery in rat hippocampus are
in agreement with experimental observations (47). These studies
argue, therefore, for the fact that using a voxelizedmesh produces
accurate results. Voxelized meshes were also used by Kim et al.
(15) and Stoverud et al. (45) to model drug delivery in rat and
human brain, respectively.

The main benefit of using a voxelized mesh instead of a
tetrahedral one is that the physical properties of the tissue, such
as the diffusivity and porosity, are assigned on a voxel-by-voxel
basis rather than being interpolated from the voxels to the mesh
tetrahedra. The computational cost is thus significantly reduced
due to the fact that there is no need for the interpolation step
in the analysis (19). For that reason, we chose to use a voxelized
mesh in our analysis as well.

In our diffusion data each voxel has dimensions 1.2×1.2×1.2
mm3. We used the voxel nodes from the diffusion data to identify
the nodes of the cubes that comprise the mesh. The mesh was
subsequently generated in OpenFOAM v3.0+ (48). The mesh for
the participant considered here consisted of 701, 114 cubic cells.
The volume of each mesh element in our analysis was smaller
than that of mesh elements previously used in the literature in
human studies such as for example those used in Stoverud et al.
(45) or Linninger et al. (22), resulting in more accurate allocation
of WM and GM voxels. This is an important point, because, as

was pointed out earlier, the drug is expected to spread faster and
in larger volumes in WM as opposed to GM.

2.4.2. Source Term
As has been done in other studies (18, 45), we assigned a source
term representing a constant infusion rate of the fluid to one
element of the mesh. This can be interpreted as a catheter
opening with a diameter equal to the dimension of a mesh
element, which is reasonable given that catheter openings of the
order of 1 mm have been proposed as appropriate to be used
in CED (13). We performed our simulations for sources located
at four different points in the mesh: one located in the corpus
callosum, one in the internal capsule, one in the hippocampus
and one in the putamen. The corpus callosum and the internal
capsule were chosen because it has been suggested that infusion
in WM areas of the brain can be used to guide the drug of
interest to GM areas (49), and therefore simulations of infusion
in WM are necessary. The hippocampus and the putamen were
chosen because they are structures of clinical significance for
epilepsy and for Huntington’s disease. When simulating infusion
in the corpus callosum, the hippocampus, and the putamen, three
different infusion rates were considered: 0.3,1.8, and 6 µl/min.
These infusion rates are realistic and have been proposed, and
modeled, in the CED literature. In subsequent sections, we refer
to the simulations with these rates as slow, medium and fast,
respectively. For the case of the slow and medium infusions, we
set the pressure difference between the infusion point and the
boundary surfaces of the brain to be equal to 3.5 kPa. For the case
of fast infusion, we set the pressure difference equal to equal to
1.5 kPa for infusion in the corpus callosum and equal to 4.5 kPa
for infusion in the hippocampus and putamen. When simulating
infusion in the internal capsule, we considered a scenario that is
similar to the experiments conducted by Raghavan and Brady (5),
and in which the infusion took place in the internal capsule (in
pig brains), starting with a rate of 2.5 µl/min for 30 min followed
by a rate of 5 µl/min. We used those infusion rates for the same
time lengths when simulating infusion in the internal capsule in
our work.

2.4.3. Solver
The system of Equations (1–3) and the system of Equations (6–8)
were solved using modified solvers from OpenFOAM v3.0+,
where the modifications were introduced to account for the
tensorial nature of diffusion and convection. A weakly coupled
problem was assumed (17), where the first two equations of
each system were solved to obtain a steady-state solution for
the velocity and pressure. The equations for the concentration
were subsequently solved with the resulting fixed velocity field.
The time step used to solve the transport equations was 1 s. The
simulations were run for an infusion time of 72 h.

We reran the simulations with a finer mesh, to check whether
changing the mesh resolution had any impact on the predicted
drug concentrations. Specifically, we used OpenFOAM v3.0+
to produce a refined mesh, the cells of which have dimensions
0.6 × 0.6 × 0.6 mm3. This refined mesh consisted of 5, 608, 912
cells. We also used OpenFOAM v3.0+ to map the tensors
(K,D,T, and R) and the porosity ϕ from the original mesh
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FIGURE 1 | Difference in covariances (DC), a measure of second order diffusion non-Gaussianity in brain tissue, for a coronal (left), sagittal (middle), and axial (right)

slice in our data. The DC is plotted on a different scale in each slice. The higher the value of DC in a voxel, the stronger the diffusion non-Gaussianity in that voxel. We

notice that the DC has large values predominantly in white matter areas of the brain.

to the refined mesh. We reran the simulations for each of the
three infusion sites and each of the two CFD models. Very
good agreement was observed between the values obtained from
the two different mesh element sizes, for the pressure, the
velocity, and the concentration of both the R-model and the
D-model.

2.4.4. Comparison of Concentrations
In order to compare the concentrations derived from the two
models, we calculated the fractional difference in concentration
f = (CR−CD

CD
) for all voxels, noting that this implies that

CR = (f + 1)CD. We also used a paired t-test for each infusion
site and rate of infusion to check whether the differences in the
concentration distributions within the distribution volume were
statistically significant.

Since the R-model contains information about the non-
Gaussianity of the diffusion process in the brain tissue, we
hypothesized that, in any given location, the difference in the
concentrations predicted by the two models would be correlated
with the non-Gaussianity of the tissue that the fluid went
through to reach that location, starting at the infusion site.
For that reason, we calculated the correlations between the
absolute value of the fractional differences in concentration and
measures of non-Gaussianity in brain tissue. Since the effects
under consideration were of second order, we calculated the
correlations of the concentration fractional differences with the
Difference in Covariances (DC), a measure of non-Gaussianity
described in Ning et al. (39). Specifically, if r̂ denotes the
displacement of molecules that is distributed according to a
Gaussian distribution G(r) and (r̂ + r̃) is the displacement that
is distributed according to the actual distribution P(r), then the
Difference in Covariances, which is a measure that has been
shown to account for the difference in the second order of the
diffusion propagator, is (39)

DC ≡ min
r̂

∫

R3
||r̃||2G(r)dr. (27)

If in a given voxel diffusion is Gaussian, then r̃ = 0 and
DC = 0. The higher the value of DC, the more non-Gaussian

FIGURE 2 | Example of the 2-dimensional Bresenham algorithm (50) for

identifying the squares for the line that connects square A to square B. The

shaded squares are the ones chosen.

the diffusion is in that voxel. Figure 1 shows the values of
DC for three representative slices in our data. WM voxels
generally exhibit higher diffusion non-Gaussianity than other
voxels.

We used the method described in Ning et al. (39) to
calculate the DC in each voxel. Then for each location of
interest we used the 3-dimensional Bresenham algorithm (50)
to identify the sequence of voxels connecting the infusion
site to the location of interest, and summed the DCs of the
voxels in that sequence. A drawing showing the Bresenham
algorithm for a 2-dimensional case is shown in Figure 2; the
algorithm is similar in 3D. The sequence of voxels given by
the Bresenham algorith is, of course, not the exact path that
the fluid follows while moving from the infusion site to the
location of interest. However that exact path cannot be known
with certainty, and in fact different fluid molecules are bound
to follow different paths to reach a given location in the
brain. The sum of DCs that we used gives an approximate,
representative measure of the non-Gaussianity that the fluid
molecules encounter while traveling from the infusion site to the
location of interest.
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3. RESULTS

3.1. Comparison of the Tensors Dw and Rw

The difference between the two CFD models presented in this

work comes from the use of the tensorR instead ofD in modeling

themovement of the fluid in the brain tissue. As explained earlier,

we first performed a detailed comparison of the properties of the

two tensors, to the extent that we expect these properties to affect

the results of the fluid dynamics simulations.

In Figure 3 we show the components of each tensor for one
axial slice. For ease of comparison, corresponding components

have been plotted in the same intensity scale. The three diagonal
components assume comparable values for both tensors, with the
components of Rw assuming slightly higher values in WM areas,
a fact that reflects the highly non-Gaussian nature of diffusion
in those brain areas. The non-diagonal components of Rw have
values in a wider range than those of Dw, so that their maxima
are larger than those of the corresponding c components of Dw,
and their minima are smaller than those of the corresponding
components ofDw.

We also mentioned earlier that we calculated the ratio of the
traces of the two tensors. That ratio is shown in Figure 4, for three

FIGURE 3 | Components of the two tensors for axial slice 70 (units of mm2/s). For ease of comparison, corresponding components were plotted in the same intensity

scale.
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FIGURE 4 | Ratio of traces of the two tensors Tr(Rw )
Tr(Dw )

, for three representative slices: coronal slice 76 (left), sagittal slice 67 (middle), and axial slice 71 (right). The

ratio of the traces is around 1, with lower values in the cortical areas and higher values in areas of higher anisotropy.

FIGURE 5 | (Top) Histogram of the FA of the two tensors in voxels identified as GM (left), WM (center), and CSF (right). The solid lines represent Dw and the dashed

lines represent Rw. (Bottom) FA of Dw (left), FA of Rw (center), difference of the FAs (right) for axial slice 70. The FAs of the two tensors are plotted on the same scale.

different brain slices. The ratio is around the value of 1, with
cortical structures exhibiting values that are slightly lower, and
highly anisotropic structures exhibiting values that are slightly
higher. It also has higher values in the dura mater surrounding
the cerebellum, which consists of fibrous tissue in a fanning
arrangement.

We then compared the FAs of the two tensors. Figure 5 shows
the distribution of the FAs of the two tensors, for GM, WM, and
CSF separately. For all three compartments, the distribution of
the FA of the tensor Rw is shifted to higher values with respect
to that of the tensor Dw, with the larger differences appearing in
WM. We performed a paired t-test to compare the distributions

of the FAs of the two tensors, separately for GM, WM and CSF.
In all three cases the FA ofRw was statistically significantly higher
than that of Dw (p-value < 10−10). To further demonstrate the
differences in FA, we show in the lower part of Figure 5 the FA
of Dw (left panel, d) and that of Rw (middle panel, e) for an
axial slice, while the right panel (f) shows the difference between
the two anisotropies for the same slice. The larger differences in
anisotropy appear mainly in the white matter areas.

Figure 6 shows the distribution of the MDs of the two tensors,
for GM, WM and CSF separately. Notice the logarithmic scale
used for the y-axis for the distributions for GM and WM. For all
three compartments, the distribution of theMD forRw is broader
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FIGURE 6 | (Top) Histogram of the MD of the two tensors in voxels identified as GM (left), WM (center), and CSF (right). The solid lines represent Dw and the dashed

lines represent Rw. (Bottom) MD (in mm2/s) of Dw (left), MD of Rw (center), difference of MDs (right) for axial slice 70. The MDs of the two tensors are plotted on the

same scale.

than that for Dw. We performed a paired t-test to compare the
distributions of the MDs of the two tensors, separately for GM,
WM and CSF. In all three cases, the MD distribution for Rw

was statistically significantly different to that of Dw (p-value <

10−10). To further demonstrate the differences in MD, we show
in the lower part of Figure 6 theMD ofDw (left panel, d) and that
of Rw (middle panel, e) for an axial slice, while the right panel (f)
shows the difference between the two MDs for the same slice.

Finally, we calculated the mean of the FA and the MD for both
tensors separately in each compartment (GM, WM, and CSF),
and the results are given in Table 2.

3.2. Predictions of Drug Concentration
In this section we present the results of our simulations.
Figures 7–10 show the concentrations predicted by the two
CFD models for 72 h of infusion time, for fast infusion in the
corpus callosum, the internal capsule, the hippocampus and the
putamen, respectively. In each Figure, the top row shows the
concentration predicted by the R-model for five representative
coronal slices. For comparison, we also show the concentration
predicted by the D-model for the same coronal slices in the
middle row. The same scale was used to plot the concentration
distributions for both models for each infusion site. In the
bottom row of each Figure, we show the fractional difference
in concentration f = (CR−CD

CD
) for the same coronal slices. The

predictions of the R-model were in very good agreement with
observations existing in the literature. Specifically, the spread of

TABLE 2 | Mean FA and MD for GM, WM, and CSF for Dw and for Rw.

Mean FA of Dw Mean FA of Rw Mean MD of Dw Mean MD of Rw

GM 0.233 0.265 1.43× 10−3 1.34× 10−3

WM 0.451 0.569 1.36× 10−3 1.41× 10−3

CSF 0.140 0.175 2.00× 10−3 2.17× 10−3

the drug in gray matter was isotropic, while the spread in white
matter areas was anisotropic and followed the anisotropy of the
underlying fibers. In all cases, we observed an extended plateau
of constant concentration spanning a distance of a few cm in
each direction, followed by a sharp drop in the concentration.
The results were similar for the cases of medium and slow
infusion.

It was proven in Equation (12) that there are differences
between the drug concentration predicted by the R-model and
that predicted by the D-model, and they depend on the duration
of infusion, the location of the infusion site and pressure and
velocity of the drug. Our simulations allow a quantification
of those differences. Observing the distributions predicted by
the two models in Figures 7–10, some differences could be
discerned, relating to both the volume covered by the drug
and the concentration of the drug in each brain location. For
a more detailed understanding of the differences, we focused
on the plots of the fractional differences in the above Figures.
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FIGURE 7 | Predicted concentrations for fast infusion in the corpus callosum. (Top) R-model prediction for 5 coronal slices, (Middle) D-model prediction for the same

slices, (Bottom) fractional difference in concentrations (
CR−CD
CD

). The same scale has been used to plot the concentration distributions for the R- and the D- model.

The FA image at the bottom shows in blue the part of the brain slices shown above.

The first observation was that the fractional differences in
concentration were relatively small for the central part of the
plateau of constant concentration predicted by the two models.
Specifically, they reached values of ±0.1 for infusion in the
corpus callosum, ±0.15 for infusion in the internal capsule,
±0.04 for infusion in the hippocampus, and ±0.07 for infusion
in the putamen. The differences became larger for the outer
edges of the plateau, for example they reached values of ±0.2
for infusion in the corpus callosum, indicating that for some
parts of the plateau, the expected drug concentration can be
up to 20% higher than that predicted when diffusion non-
Gaussianity is not taken into account. In addition to that, the
values of the fractional difference were larger for the front of
the spread of the drug. Specifically, for the case of the corpus
callosum and the internal capsule, they routinely reached values
of up to 7 in voxels where the concentration was in the range
of 5–10% of the maximum concentration, indicating that the
concentration predictions can be incorrect by a large factor
if diffusion non-Gaussianity is not taken into account. This
is important because it implies that including the effects of
non-Gaussianity in the analysis results in different conclusions
when assessing which brain locations are reached by the drug,
and with what concentration.

We also looked into the distribution volume of the
drug. Different studies have used different definitions for the

distribution volume of the drug. For example, in Kim et al.
(15) and Linninger et al. (22) the distribution volume was
defined as the volume of the mesh elements in which the drug
concentration was at least 5% of the maximum concentration,
while in Sarntinoranont et al. (17), Kim et al. (18), and
Magdoom et al. (20) that threshold was 15%. In our work, we
defined the distribution volume as the volume of the voxels
in which the drug concentration reached 5% or higher of
the maximum concentration. Figure 11 shows the distribution
volumes resulting from our simulations with the R-model for
the 4 infusion sites for different volumes of the infused drug.
As expected, the relationship is linear in all cases. Additionally,
higher infusion rates resulted in lower distribution volumes. This
result is in agreement with the experimental observations of
Magdoom et al. (20).

As previously mentioned, we used a paired t-test for each
infusion site and rate to check whether the differences in the
concentration distributions within the distribution volume were
statistically significant. For infusion in the corpus callosum,
the differences reached statistical significance (p-value of t-
test < 0.01) at under 3 h of infusion for slow and medium
infusions and at 6 h of infusion for fast infusion, increasing in
magnitude for later times. For infusion in the internal capsule,
the differences reached statistical significance at under 1 h of
infusion. For infusion in the putamen, the differences reached

Frontiers in Neurology | www.frontiersin.org 11 December 2018 | Volume 9 | Article 1092

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Messaritaki et al. Improving Convection-Enhanced Drug Delivery Predictions

FIGURE 8 | Predicted concentrations for infusion in the internal capsule. (Top) R-model prediction for 5 coronal slices, (Middle) D-model prediction for the same

slices, (Bottom) fractional difference in concentrations (
CR−CD
CD

). The same scale has been used to plot the concentration distributions for the R- and the D- model.

The FA image at the bottom shows in blue the part of the brain slices shown above.

statistical significance at 3 h of infusion for the cases of slow
and medium infusions and at 1 h for the case of fast infusion,
also increasing in magnitude for later times. For infusion in
the hippocampus, the observed differences reached statistical
significance at under 60 h for the cases of slow and medium
infusion and at 48 h for the case of fast infusion.

The fact that the tensor R has different eigenvectors to the
tensorDmeans that the R-model would tend to channel the fluid
along different directions in principle, which would then reach
different brain structures. This is important because it has direct
implications on the recommendations given to clinicians for
the practical implementation of CED, regarding the positioning
of the catheters and the infusion pressure and flow rate. We
plotted the edge of the distribution volume for the two different
models on an FA map of the brain for a few representative
coronal slices, and compared the structures that the drug reaches
based on each model, for the 4 infusion sites. The results are
shown on Figure 12. The largest differences between the voxels
reached by the drug appear for the case of infusion in white
matter, namely the corpus callosum and the internal capsule. The
differences were similar to the discrepancies between predictions
derived by the D-model and experimental observations reported

by Raghavan et al. (5) for infusion in the internal capsule
of pig brain. Specifically, for infusion in white matter areas,
the distributions predicted when diffusion non-Gaussianity was
disregarded were smoother and less sharply defined than those
predicted when it was taken into account.

As we explained earlier, we looked into possible correlations of
the differences in concentration with the DC of the brain tissue.
The correlation coefficients between the absolute value of the
fractional difference in the concentrations and the sum of DCs
along the Bresenham line for the four infusion sites are given in
Table 3, for three different time points of our simulations. All
correlations were positive and highly statistically significant (p-
value < 10−10), and persisted over time. This indicates that the
higher the sum of the DCs in the tissue between the infusion
site and the location of interest, the larger the differences in the
concentrations predicted by the two models.

We also examined the correlations between the absolute value
of the fractional difference in the concentrations and the sum
of the FAs of the voxels in the Bresenham line, however these
correlations, even though statistically significant in most cases,
were weaker than the correlations with the sum of the DCs and
for that reason we do not dwell on them here.
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FIGURE 9 | Predicted concentrations for fast infusion in the hippocampus. (Top) R-model prediction for 5 coronal slices, (Middle) D-model prediction for the same

slices, (Bottom) fractional difference in concentrations (
CR−CD
CD

). The same scale has been used to plot the concentration distributions for the R- and the D- model.

The FA image at the bottom shows in blue the part of the brain slices shown above.

4. DISCUSSION

We presented a theoretical framework and the corresponding
CFD model for modeling convection-enhanced drug delivery
to the human brain, at an individual-participant level. We also
used high-resolution human diffusion MRI data to perform
simulations of CED with our CFD model and with the CFD
model that has been previously used in the literature. Our
novel model, abbreviated as R-model, relies on the diffusion
propagator, while the previous model, abbreviated as D-model,
relies on the DT. The key development in our work is that
our model does not assume Gaussian diffusion in brain tissue,
but rather employs the MR-measured diffusion probability
along all directions, therefore incorporating the second-order
effects of restriction and hindrance on the motion of the drug
macromolecules.

Both the validity of our model and the need for including
diffusion non-Gaussianity when modeling CED are supported
by experimental results already present in the literature. Firstly,
the R-model gave results for the drug distribution that are

in agreement with experimental observations, with the drug
spreading isotropically in gray matter areas, while exhibiting
an anisotropic distribution that follows the direction of the
underlying fibers in white matter areas. Additionally, the R-
model predicted drug distributions in white matter areas that
are more anisotropic and less smooth than those predicted by
the D-model. Raghavan et al. (5) reported that their simulations,
using the DT, predicted distributions that were smoother and
less anisotropic compared to the observed distributions, when
performing infusion in the internal capsule of pig brains. Our
simulations using the tensor R, which represents the tissue
diffusion anisotropy more accurately than the DT, resulted
in predictions that exhibit exactly the behavior observed
experimentally by Raghavan et al. (5).

Additionally, there are other instances in the literature where
statistically significant differences have been reported between
experimentally observed drug distributions and those predicted
by the model that uses the DT, and where taking into account
the effects of diffusion non-Gaussianity could improve the
predictions. For example, in the study presented by Kim et al.
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FIGURE 10 | Predicted concentrations for fast infusion in the putamen. (Top) R-model prediction for 5 coronal slices, (Middle) D-model prediction for the same

slices, (Bottom) fractional difference in concentrations (
CR−CD
CD

). The same scale has been used to plot the concentration distributions for the R- and the D- model.

The FA image at the bottom shows in blue the part of the brain slices shown above.

(47), statistically significant differences were observed between
the predicted and the observed drug distributions for infusion
in rat hippocampus. The differences were up to 20.7% and
related to the areas that were predicted to be covered by the
fluid compared to those that were actually covered. Using the
R-model could mitigate some of the differences. Additionally,
Kim et al. (18) compared their computational predictions of
the distribution volume with the experimental observations of
Wood et al. (51), for infusion in rat spinal cord, and found
statistically significant differences between the two. Even though
the authors offered some reasons for the differences, it is possible
that predictions could be improved if the R-model were used and
the diffusion non-Gaussianity that is known to be present in the
highly anisotropic spinal cord were properly accounted for in the
model.

It is important to keep in mind that our analysis was
performed on data collected from a healthy participant.
Pathological brain tissue, which will ultimately be the target of
CED treatment, could be even more affected by the effects of
diffusion non-Gaussianity. We showed in our analysis that the
higher the sum of the DCs in the tissue between the infusion site
and a location of interest, the larger the difference between the
concentrations predicted be the two models. Studies of diseased
brain that exist in the literature, however, have not investigated
the DC in diseased brain but rather the FA of D and how that

changes as a result of disease. Both the FA and the DC relate to
the anisotropy of the brain tissue and we therefore expect that
they will be correlated. We calculated the correlation coefficient
between FA and DC in the brain of our healthy participant and
found it to be 0.54 (p-value < 10−10), indicating that in general
the higher the DC is in a voxel, the higher the FA is as well.
A recent meta-analysis of data from HD patients (52) showed
that there is elevated FA in the caudate and the putamen in
symptomatic HD patients compared to controls. Therefore, the
effect of taking non-Gaussianity into account could be larger in
those patients than our simulations for infusion in the putamen
of the healthy participant indicate. Similar conclusions apply in
patients with temporal lobe epilepsy, who were shown to have
altered microstructure in the hippocampus compared to age-
matched controls, with a higher FA in the dentate gyrus than
age-matched controls (53). Additionally, in a recent study of 21
PD patients scanned at 3T, the PD patients were found to have
an average FA of about 0.6 in the substantia nigra and of about
0.5 in the globus pallidus (54), which were again higher than the
average FA in the same brain structures of healthy controls. This,
again, indicates that it will be necessary to correctly account for
the effects of diffusion non-Gaussianity when simulating CED
for those patients. Finally, it has been shown that, in the case of
ischemic stroke, there is a decrease in the extracellular space of
the affected tissue which can be up to 75% (11). This means more
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FIGURE 11 | Distribution volume vs. infused volume, for the R-model. The relationship is linear for all infusion sites.

restriction for the motion of the drug molecules than expected
in healthy subjects, which makes it necessary for the effects of
non-Gaussianity to be taken into account when modeling CED.

Considering the suggested future directions for CED, it
becomes evident that the effects of diffusion non-Gaussianity
need to be properly accounted for in CFD models. For example,
it has been proposed (10) that a potential future avenue for more
effective CED therapies, in particular for brain tumors, could
be to use infusion for long times, comparable to the times in
the simulations performed in our work. Longer infusion times
relate to larger distribution volumes and therefore larger values
for the sum of theDCs between the infusion point and the various
structures that are covered by the drug. The positive correlations
between the sum of the DCs and the fractional differences
in concentration observed in our work imply that, especially
for the structures that are furthest from the infusion location,
not accounting for diffusion non-Gaussianity could lead to
significant over- or under-estimation of the drug concentration
in those structures. It has also been proposed that infusion in
WM structures could be used to guide the therapeutic agents to
GM structures faster. The effects of diffusion non-Gaussianity on
the distribution of the drug were more pronounced in the case
of infusion in WM structures (such as the corpus callosum and
the internal capsule examined in our work), and for these cases

it would be necessary for those effects to be appropriately taken
into account in the computational simulations by using the R-
model rather that the D-model. Another proposed area of future
development for CED relates to considering the size and shape
of the therapeutic macromolecules (13). The larger the molecules
that have to move in the small extracellular space in the brain
tissue, the stronger they will feel the effects of restriction, and the
larger the error made by using the D-model to predict the drug
distributions through CED. Using amodel that properly accounts
for diffusion non-Gaussianity will be necessary in that case.

It is worth pointing out that the resolution used in our
diffusion scans, namely (1.2 mm)3, is much finer than that
routinely used when collecting human diffusion MRI data,
which is usually (2 mm)3. As a result, the volume of each
voxel, and therefore each mesh element, in our study is 4.6
times finer than otherwise, resulting in the tissue in each voxel
being more accurately assigned as GM, WM, or CSF, and
thus rendering the simulations more accurate than otherwise.
Crucially, the scanning time required to achieve this resolution
in the Connectom scanner at CUBRIC was, as previously
mentioned, 19 min, which is well tolerated by most participants,
including vulnerable populations such as patients. We should
mention, however, that this high resolution, although desirable,
is not necessarily essential for accurate simulations. It has
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FIGURE 12 | Distribution volumes (i.e., volumes where the drug reaches a concentration that is at least 5% of the maximum concentration) predicted by the R-model

(red curves) and by the D-model (blue curves), for the 4 infusion sites used in our simulations. Accounting for diffusion non-Gaussianity results in distribution volumes

that are less smooth and more anisotropically defined, following the anisotropy of the underlying tissue.

been shown in the literature that CFD simulations using
diffusion MRI scans of lower resolution (22, 45) can yield
predictions that are, at the very least, in very good qualitative
agreement with experimental observations. More research in
this direction is needed, so that the optimal resolution that
minimizes the scan time while providing the details of brain
tissue microstructure needed to produce accurate simulations is
identified.

Our work has a few limitations. Firstly, we did not include in
our model the effects of clearance or metabolism of the drug in
the brain. Such terms are discussed in some papers such as (22),
however they are not known with certainty and in any case they
would be identical in the R-model and the D-model and therefore
would not change the results of our analysis.

Additionally, wemodeled the catheter as a point source, which
is a simplification of the actual situation. However, the effect of
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TABLE 3 | Correlation coefficients between the fractional difference in concentration and the non-Gaussianity the sum of the DCs along the Bresenham line that connects

the infusion voxel and the voxel of interest, for infusion in the hippocampus and the putamen, for all three infusion rates and for 6 different infusion times.

Fast Medium Slow

24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h

Corpus callosum 0.23 0.23 0.18 0.18 0.12 0.12 0.18 0.12 0.12

Internal capsule 0.38 0.35 0.30

Hippocampus 0.45 0.43 0.43 0.45 0.40 0.45 0.43 0.40 0.45

Putamen 0.40 0.48 0.54 0.39 0.48 0.55 0.39 0.48 0.55

The p-values for all correlations were lower than 10−10, indicating highly statistically significant correlations.

this simplification will be the same for both models and, again,
does not affect the conclusions of our work. In fact, there are
some proposedmethods of drug delivery viaMRI-guided canulas
(55), for which no catheter is needed and for which the approach
used in this and other works to model the source term is very
realistic. Despite that, in future work related to this project,
we will incorporate the catheter in the simulations, which, in
addition to making the simulations more realistic, will allow us
to investigate effects such as backflow.

In our CFD model, and, to the best of our knowledge, in the
majority of the models that are based on the diffusion tensor (15–
18, 21, 22), the brain tissue is assumed to be a rigid structure. This
is, however, an approximation and is discussed by Stoverud et al.
(45) and references therein. In the future, models that use the
diffusion displacement covariance tensor should treat the brain
tissue as an elastic medium.

Finally, the main limitation of this work is the lack of
experimental validation of the results of the simulations. Our goal
was to present a theoretical model that predicts drug distributions
during CED and which has the potential to address some of the
limitations of other theoretical models previously presented in
the literature. We presented evidence from the literature to show
that our theoretical model’s predictions are in agreement with
existing experimental results, for example as regards to the flow
of the drug in brain structures of various anisotropies, as well as
the drug distribution volume. We also presented evidence that
shows that accounting for diffusion non-Gaussianity, as in our
R-model, results in drug distributions that exhibit the anisotropy
which is observed during infusion in animal brains and which
is missing from the predictions of the D-model. Despite that,
experimental validation is desirable. For that reason, we will
perform infusion of gadolinium on phantoms that mimic the
human brain structure, and on animals, and monitor its spread
using MR imaging.
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APPENDICES

A. DERIVATION OF THE TRANSPORT
EQUATION

The starting point of the new framework that describes the
motion of the molecules of a fluid in a porous medium is the
Master Equation described by (56), and independently by (57):

∂C(r, t)

∂t
= −

∑

r′

w(r′, r)C(r, t)+
∑

r′

w(r, r′)C(r′, t). (A1)

In this equation, w is the transition rate of the fluid molecules
from position r to r′ in a given time. This Master Equation
expresses the conservation of mass, and describes the rate of
change of the concentration at point r as the change due to
all particles moving away from point r toward all neighboring
points r′ (thus the minus sign in the first term of the right-
hand side of the equation) and that due to all particles moving
toward point r from all neighboring points r′. The simplicity and
fundamentality of Equation (A1), as well as the fact that it can
encompass phenomena in a wide range of spatial and temporal
scales, has resulted in its extensive use in physics, chemistry, and
fluid dynamics problems.

In order to proceed with Equation (A1) in our fluid dynamics
scenario we need to know w(r, r′). This requires detailed
knowledge of the background in which the fluid particles move,
which, in the case of CED, includes characterization of the
microstructure of the brain tissue.

The drug concentration is assumed to be slowly varying
over finite length scales, which is a valid assumption based
on experimental results for CED (14, 16, 21). A Taylor series
expansion for the concentration at point r′ (keeping terms up to
second order in the distance between the points r and r′) gives:

C(r′, t) ≈ C(r, t)+ (r′ − r) · ∇C(r, t)

+
1

2
(r′ − r) · (r′ − r) :∇∇C(r, t) (A2)

where the dyadic symbol : denotes the tensor product.
Substituting (A2) into (A1), a partial differential equation for the
concentration is derived:

∂C(r, t)

∂t
=

∑

r′

[w(r, r′)− w(r′, r)]C(r, t)

+
∑

r′

w(r, r′)(r′ − r) · ∇C(r, t)

+
∑

r′

w(r, r′)
1

2
(r′ − r)(r′ − r) :∇∇C(r, t).

(A3)

The next step is to separate the two mechanisms that contribute
to the flow of the drug in the brain tissue, namely the diffusion

and the pressure-driven convection. We get:

w(r, r′) ≡ W(r′ − r; r′) �(p(r′)− p(r))

≈ F(|r, r′|; r′)
[

λ +
1

2
(p(r′)− p(r))

]

= wd(r, r
′)+

1

2λ
wd(r, r

′)(p(r′)− p(r)]

(A4)

where p(r) is the pressure at point r and wd(r, r
′) = λF(|r, r′|; r′)

denotes the contribution to the rates that comes exclusively
from the diffusion process. The function � contains all of
the dependence of the transition rate w in the pressure
difference. In essence this is an expansion in the pressure
difference, where we only keep first order terms. The term
F(|r, r′|; r′) (p(r′) − p(r)) is proportional to the contribution
of convection (with a permeability proportional to F(|r, r′|; r′))
while the term λF(|r, r′|; r′) is proportional to the contribution
of diffusion. The factor λ reflects the difference in the
scaling between the convection and the diffusion in brain
tissue.

The function F encompassing the effects of diffusion can be
written as a Taylor series:

F(|r, r′|; r′) ≈ F(|r, r′|; r)(r′ − r) · ∇F +
1

2
(r′ − r)(r′ − r) :∇∇F.

(A5)
A Taylor series expansion for the pressure at point r′ gives for the
pressure difference:

p(r′)− p(r) ≈ (r′ − r) · ∇p(r)+
1

2
(r′ − r)(r′ − r) :∇∇p(r) (A6)

Combining (A4) with (A5) and substituting the result and (A6)
into (A3) gives:

∂C(r, t)

∂t
= ∇ ·

[R(r)

λ
∇p(r)C(r, t)+ ∇

(

R(r)C(r, t)
)

]

(A7)

where the tensor R(r) is defined by the equation

R(r) ≡
1

2

∑

r′

λ F(|r, r′|; r)(r′ − r)(r′ − r)

=
1

2

∑

r′

wd(r, r
′)(r′ − r)(r′ − r).

(A8)

Equation (A7) is a continuity equation, according to which the
time derivative of the concentration of the fluid is equal to the
divergence of the total concentration flux, resulting from the
diffusive and the convective process. In (31), the permeability
for the convection-induced spread of the drug in the anisotropic
brain tissue is defined as:

T(r) ≡
R(r)

λ
ϕ (A9)

where ϕ is the porosity. Equation (A9) implies that the
permeability tensor of the drug in the brain tissue shares
the same eigenvectors as its dispersion tensor. Because our
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knowledge of the comparative scale of the two tensors that
appear in Equation (A9) comes from animal data, and we
indeed only know the comparative scale of the two, we absorb
the porosity ϕ in the factor λ and set λ̂ = λ/φ, to
get

T(r) ≡
R(r)

λ̂
. (A10)

The term−T(r)∇p(r) in (A7) is the velocity field:

v(r) = −T(r)∇p(r),

so Equation (A7) becomes

∂C(r, t)

∂t
= −∇

[

v(r) · C(r, t)/ϕ
]

+ ∇
[

R(r)∇ · C(r, t)
]

. (A11)

Multiplying all terms of Equation (A11) by the porosity and
taking into account the fact that the changes in porosity are
negligible in this case we finally get

ϕ
∂C(r, t)

∂t
= −∇

[

v(r) · C(r, t)
]

+ ∇
[

ϕ R(r)∇ · C(r, t)
]

.

For an incompressible fluid we additionally have that

∇ · v(r) = 0.

We thus have the system of 3 equations that describe the
movement of the fluid:

∇ · v(r) = 0 (A12)

v(r) = −T(r)∇p(r) (A13)

ϕ
∂C(r, t)

∂t
= −∇

[

v(r) · C(r, t)
]

+ ∇
[

ϕ R(r)∇ · C(r, t)
]

. (A14)

with Equations (A8) and (A10) needed in order for the formalism
to be complete.

We note here that it is possible to follow on and include higher
order corrections to the model. Specifically, the Taylor series
expansions can be extended to include corrections up to fourth
order. In that case, combining the terms as earlier, the third order
terms vanish due to symmetries, and we are left with fourth order
terms. Even though such terms could, in principle, be useful for
some fluid dynamics problems, numerical schemes that deal with
fourth-order terms are not widely available, because they tend
to be unstable and difficult to converge. It is, therefore, difficult
to construct a CFD model that would give reliable predictions
that include those higher order terms. Regardless of that fact,
for the specific problem of CED in the human brain that we are
dealing with, including those higher order terms is not necessary.
Including such terms is necessary in tractography algorithms,
when trying to distinguish between fiber crossings. However, in
our case, because the fluid molecules move in the extracellular
space, it is of no relevance whether the encountered anisotropy is
a result of crossing, bending or fanning fibers. In other words,
we are not interested in extracting the diffusion orientation
distribution function, and for that reason we do not include terms
of order higher than second in our analysis.
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