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Abstract

Background: Alzheimer’s disease (AD) is the most common form of dementia with genetic and environmental
risk contributing to its development. Graph theoretical analyses of brain networks constructed from structural
and functional magnetic resonance imaging (MRI) measurements have identified connectivity changes in AD
and individuals with mild cognitive impairment. However, brain connectivity in asymptomatic individuals at
risk of AD remains poorly understood.
Methods: We analyzed diffusion-weighted MRI data from 161 asymptomatic individuals (38–71 years) from
the Cardiff Ageing and Risk of Dementia Study (CARDS). We calculated white matter tracts and constructed
whole-brain, default mode network (DMN) and visual structural brain networks that incorporate multiple
structural metrics as edge weights. We then calculated the relationship of three AD risk factors, namely
Apolipoprotein-E e4 (APOE4) genotype, family history of dementia (FH), and central obesity (Waist-Hip-
Ratio [WHR]), on graph theoretical measures and hubs.
Results: We observed no risk-related differences in clustering coefficients, characteristic path lengths, eccentric-
ity, diameter, and radius across the whole-brain, DMN or visual system. However, a hub in the right paracentral
lobule was present in all the high-risk groups (FH, APOE4, obese), but absent in low-risk groups (no FH,
APOE4-ve, healthy WHR).
Discussion: We identified no risk-related effects on graph theoretical metrics in the structural brain networks of
cognitively healthy individuals. However, high risk was associated with a hub in the right paracentral lobule, a
medial fronto-parietal cortical area with motor and sensory functions. This finding is consistent with accumulat-
ing evidence for right parietal cortex contributions in AD. If this phenotype is shown to predict symptom devel-
opment in longitudinal studies, it could be used as an early biomarker of AD.
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Impact Statement

Alzheimer’s disease (AD) is a common form of dementia that to date has no cure. Identifying early biomarkers will aid
the discovery and development of treatments that may slow AD progression in the future. In this article, we report that
asymptomatic individuals at heightened risk of dementia due to their family history, Apolipoprotein-E e4 genotype, and
central adiposity have a hub in the right paracentral lobule, which is absent in low-risk groups. If this phenotype were to
predict the development of symptoms in a longitudinal study of the same cohort, it could provide an early biomarker of
disease progression.

Introduction

Alzheimer’s disease (AD) is one of the major causes of
dementia that affect 10% of individuals older than the

age of 65. In the United States, over 1 million individuals
per year will be affected by AD by 2050 (Hebert et al.,
2013). A recent review by the Lancet Commission concluded
that almost half of the dementia cases might be prevented or
delayed by modifying 12 risk factors (Livingston et al.,
2020). It emphasized the importance of improving the
early detection of individuals at risk of developing AD so
that preventative therapeutics can be discovered and devel-
oped in the future. It is therefore important to gain a better
understanding of how AD risk factors affect the structure
of the brain in healthy individuals and how risk-related ef-
fects differ from those of healthy aging.

The human brain has been characterized as a network of
cortical and subcortical areas (network nodes) that communi-
cate with each other via white matter tracts (connections or
edges) that carry neuronal signals (Bullmore and Bassett,
2011; Rubinov and Sporns, 2010). Structural networks can
be derived from diffusion-weighted magnetic resonance im-
aging (dMRI) data via tractography (Basser et al., 2000;
Mukherjee et al., 2008a,b), and are represented mathemati-
cally by graphs. Graph theory can then be used to quantify
the local and global organizational properties of the brain’s
structural connectome (Bullmore and Sporns, 2009).

Graph theoretical analyses of brain networks have pro-
vided insight into the effect of AD on the brain’s connectiv-
ity (Dai et al., 2019; John et al., 2017; Lo et al., 2010). More
specifically, there is strong evidence that even though AD pa-
thology is initially present in localized brain areas, it still af-
fects the whole brain as a network. It is, therefore, possible
that people at risk of developing AD could show alterations
in their structural brain networks and their graph theoretical
metrics before developing the disease. This implies that in-
vestigations into possible relationships between AD risk fac-
tors and graph theoretical metrics of structural brain
networks could provide biomarkers that signal disease
onset or track disease progression.

In the present study, we used graph theory to characterize
the mesoscale of structural brain networks for the whole-
brain connectome and for a system that is known to be af-
fected in AD, namely the default mode network (DMN),
as well as the visual network as a control (Badhwar et al.,
2017), in 161 cognitively healthy individuals from the
Cardiff Ageing and Risk of Dementia Study (CARDS)
(38–71 years) (Coad et al., 2020; Metzler-Baddeley et al.,
2019a,b; Mole et al., 2020a,b) with different risk factors
for AD. The risk factors investigated were Apolipoprotein-
E e4 (APOE4), family history of dementia (FH), and central

obesity as assessed with the Waist-Hip-Ratio (WHR). A
statistical framework was followed to reveal potential dif-
ferences in the structural network organization between
groups of aggregated risk levels. Our hypothesis was that
individuals at the highest risk of dementia, that is, obese
APOE4 carriers with a FH, compared with those at lowest
risk, that is, normal-weighted noncarriers without a family
history, would have altered integration and segregation pa-
rameters (increased characteristic path lengths, decreased
clustering, etc.). In our exploratory analysis of hubs, we
aimed to identify any highly interconnected nodes that con-
sistently differed between low- and high-risk group (FH vs.
no FH, APOE4 carrier vs. noncarrier, obese vs. healthy
WHR).

Materials and Methods

Details of the CARDS procedures have been previously
published (Coad et al., 2020; Metzler-Baddeley et al.,
2019a,b; Mole et al., 2020a,b) and hence are only briefly de-
scribed in the following. The CARDS was approved by the
School of Psychology Research Ethics Committee at Cardiff
University (EC.14.09.09.3843R2) and all participants pro-
vided written informed consent.

Participants

Individuals between the ages of 38 and 71 were recruited
from the local community via Cardiff University commu-
nity panels, notice boards, and poster advertisements.
Exclusion criteria included a history of neurological and/
or psychiatric disease, severe head injury, drug or alcohol
dependency, high-risk cardioembolic source, or known sig-
nificant large-vessel disease. MRI screening criteria were
fulfilled by 166 participants. Table 1 summarizes their de-
mographic background, and information about their genetic
and lifestyle risk variables. Depression was screened for
with the Patient Health Questionnaire (PHQ-9) (Kroenke
et al., 2001), verbal intellectual function was assessed
with the National Adult Reading Test (NART) (Nelson,
1991), and cognitive impairment with the Mini Mental
State Examination (MMSE) (Folstein et al., 1975). One
participant was excluded after assessment of the MMSE
score (MMSE = 26). Four participants had missing data,
and thus, the final analysis had a sample size of 161.

Assessment of risk factors

Participants gave saliva samples with the Genotek
Oragene-DNA kit (OG-500) for APOE genotyping. APOE
genotypes e2, e3, and e4 were determined by TaqMan geno-
typing of single-nucleotide polymorphism (SNP) rs7412 and
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KASP genotyping of SNP rs429358 (Metzler-Baddeley
et al., 2019a). Genotyping was successful for 164 of the
165 participants. In addition, 163 participants provided infor-
mation about their FH, that is, whether a first-grade relative
was affected by AD, vascular dementia, or any other type of
dementia. We also obtained the number of years spent in ed-
ucation for the 164 participants, to include as a covariate in
this analysis (Table 1).

Participants’ waist and hip circumferences were measured
to calculate the waist/hip ratio (WHR). Central obesity was
defined as a WHR ‡0.9 for men and ‡0.85 for women
(Table 1). Other metabolic risk factors were self-reported
in a medical history questionnaire [see for details Mole and
collegues (2020a) Neurobiology of Aging] but were not in-
cluded in the present analysis.

MRI data acquisition

MRI data were collected on a 3T MAGNETOM Prisma
clinical scanner (Siemens Healthcare, Erlangen, Germany)
(Coad et al., 2020; Metzler-Baddeley et al., 2019a,b; Mole
et al., 2020a) at the Cardiff University Brain Research
Imaging Centre (CUBRIC). A 3D magnetization-prepared
rapid gradient-echo sequence was used to acquire T1-
weighted anatomical images with the following parameters:
256 · 256 acquisition matrix, TR = 2300 ms, TE = 3.06 ms,
TI = 850 ms, flip angle h = 9�, 176 slices, 1 mm slice thick-
ness, 1 · 1 · 1 mm isotropic resolution, FOV = 256 mm,
and acquisition time of *6 min.

Diffusion-weighted magnetic resonance images were ac-
quired with high angular resolution diffusion imaging
(HARDI) (Tuch et al., 2002) using a spin-echo echo-planar
dual-shell HARDI sequence with diffusion encoded along
90 isotropically distributed orientations ( Jones et al.,
1999) (30 directions at b = 1200 sec/mm2, 60 directions at
b = 2400 sec/mm2) as well as 6 nondiffusion-weighted im-
ages with dynamic field correction using the following

parameters: TR = 9400 ms, TE = 67 ms, 80 slices, 2 mm slice
thickness, 2 · 2 · 2 mm voxel, FOV = 256 · 256 · 160 mm,
GRAPPA acceleration factor = 2, and acquisition time
of *15 min.

HARDI data processing and whole-brain tractography

Diffusion-weighted imaging data processing has been pre-
viously detailed in Coad and colleagues (2020), Metzler-
Baddeley and colleagues (2019a,b), and Mole and colleagues
(2020a,b). In brief, dual-shell data were split and b = 1200
and 2400 sec/mm2 data were corrected separately for distor-
tions induced by the diffusion-weighted gradients and motion
artifacts in ExploreDTI (v4.8.3) (Leemans et al., 2009). Echo
planar imaging-induced geometrical distortions were cor-
rected by registering the diffusion-weighted image volumes
to the T1-weighted images (Irfanoglu et al., 2012).

Outliers in the diffusion data were identified with the
RESDORE algorithm (Parker, 2014). Whole-brain tractogra-
phy was performed with the damped Richardson/Lucy algo-
rithm (dRL) (Dell’Acqua et al., 2010) on the 60 direction,
b = 2400 sec/mm2 HARDI data for each data set in single-
subject space using in-house software (Parker, 2014) coded
in MATLAB (The MathWorks, Natick, MA). Fiber tracts
were reconstructed by estimating the dRL fiber orientation
density functions (fODFs) at the center of each image
voxel with seed points positioned at the vertices of a
2 · 2 · 2 mm grid superimposed over the image. At each
seed point, the tracking algorithm interpolated local fODF
estimates and then propagated 0.5 mm along orientations of
each fODF lobe above a threshold of a peak amplitude of
0.05. Individual streamlines were then propagated by inter-
polating the fODF at their new location and by propagating
0.5 mm along the minimally subtending fODF peak. This
process was repeated until the minimally subtending peak
magnitude fell below 0.05 or the change of direction
exceeded an angle of 45�. Tracking was subsequently

Table 1. Participant Demographics

Mean (r)

Age 55.76 (8.22), range: 38–71
Males 71/165
Years of education 16.55 (3.32), range: 9.5–26
FH 59/163
APOE4 carriers 64/164
WHR obese 102/165

N (M) N (F) Mean age, M (r) Mean age, F (r)

Demographics broken down by risk factor
No FH, No APOE4, Healthy weight 4 16 53.75 (4.03) 53.69 (8.68)
FH, No APOE4, Healthy weight 0 13 — 53.85 (6.87)
No FH, APOE4, Healthy weight 3 16 49.00 (7.21) 52.88 (9.64)
No FH, No APOE4, Obese 18 21 56.17 (8.74) 56.05 (7.68)
FH, APOE4, Healthy weight 4 6 59.00 (2.45) 59.83 (5.19)
No FH, APOE4, Obese 20 6 54.00 (9.61) 58.67 (6.56)
FH, No APOE4, Obese 17 10 58.71 (7.71) 56.60 (9.35)
FH, APOE4, Obese 5 3 57.00 (8.22) 62.00 (7.94)

This table lists the demographics (age, years of education and sex) of the participants who took part in this study, and splits M and F data by
risk factor group. Mean age and years of education, accurate to 2 decimal places, are quoted with standard deviations reported in brackets (r).

APOE4, Apolipoprotein-E e4; F, female; FH, family history of dementia; M, male; WHR, waist/hip ratio.
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repeated in the opposite direction from the initial seed point.
Streamlines with lengths outside a range of 10 to 500 mm
were removed.

Generating integrated weighted structural
brain networks: whole-brain analysis

Whole-brain tractography maps were used in ExploreDTI
v4.8.6 (Leemans et al., 2009) to create connectivity matrices
that describe the structural connectome mathematically.
Network nodes were defined according to the automated
anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) using the 90 cortical and subcortical areas of the
cerebrum. The edges of the networks were the tractography-
reconstructed tracts: all edges between brain areas not con-
nected by tracts were therefore equal to zero. This process
resulted in sixteen 90 · 90 connectivity matrices, the edges
of each quantifying if there was a tract or not, number of
streamlines between two nodes, percentage of tracts (PS) be-
tween two nodes, average tract length (ATL), Euclidean dis-
tance (ED), density of tracts, tract volume (TV), mean
diffusivity (MD), axial diffusivity (AxD), radial diffusivity
(RD), fractional anisotropy (FA), second and third eigen-
value of the diffusion tensor, linear anisotropy, planar anisot-
ropy, and spherical anisotropy.

The above mentioned metrics were chosen because they
could reflect the signal transport and integration abilities
of the structural connectome (Messaritaki et al., 2021). In
addition, the strength of the structural connectivity between
brain areas depends on the metric used to weight the network
edges. As a result, the network measures derived via the
graph theoretical analysis depend on the connectivity matrix
used—that is, which of the above metrics we chose as an
edge weight. We have recently shown that this ambiguity
can be solved by linearly combining nine normalized metrics
(number of tracts, PS, ATL, ED, density, TV, MD, RD, and
FA) into a single graph (Dimitriadis et al., 2017b) and thresh-
olding the subsequent graphs using an orthogonal minimal
spanning tree scheme (Dimitriadis et al., 2017a). This proto-
col creates connectivity matrices that combine the informa-
tion from the included metrics in a data-driven manner, so
that the maximum information from all metrics is retained
in the final graph; these are termed integrated graphs. The
thresholding step can be applied in dense matrices, resulting
in a topographically filtered integrated weighted structural
brain network. The network and nodal reliability of such in-
tegrated graphs was improved beyond that of the nine indi-
vidual metrics (Dimitriadis et al., 2017b). In addition, they
were shown to have very good discrimination capability in
a binary classification problem (Dimitriadis et al., 2017b),
and to exhibit good scan/rescan reliability (Messaritaki
et al., 2019a,b). A recent study demonstrated that community
partitions and provincial hubs are highly reproducible in a
test/retest study when structural brain networks were con-
structed with the integrated approach (Dimitriadis et al.,
2020). For those reasons, we created integrated weighted
brain networks instead of pursuing a single-metric structural
connectivity matrix.

To reduce the number of false positives possibly resulting
from the tractography, we set to zero all edges in the struc-
tural connectivity matrices that corresponded to tracts with
fewer than five streamlines (excluding ED as this is a biolog-

ical metric and has a value regardless of the number of
streamlines). All subsequent analyses were performed on
these thresholded connectivity matrices (Fig. 1).

To decide which metrics to combine into the integrated
weighted structural brain network, we calculated the inter-
correlation coefficients (Corrcoef, MATLAB R2015a)
between the number of streamlines (NS), PS, ATL, ED, den-
sity of streamlines (SLD), TV, MD, RD, AxD, and FA, see
Table 2. In addition, we performed a multicollinearity test
(Collintest, MATLAB R2015a) in an endeavor to eliminate
metrics representing redundant information within our inte-
grated graphs. After excluding highly correlated and multi-
collinear metrics, the remaining metrics were integrated
into a single graph via a linear graph-distance combination
(Dimitriadis et al., 2017b).1

Calculating network measures from integrated graphs

The resulting graphs were weighted and undirected. Using
the MATLAB Brain Connectivity Toolbox (Rubinov and
Sporns, 2010), we calculated the following metrics:

� Clustering coefficient: A measure of how intercon-
nected nodes are (averaged across all nodes)

� Characteristic path length: The average minimum num-
ber of connections to link two nodes

� Eccentricity: Maximum shortest distance between one
node and all others (averaged across all nodes)

� Radius: Minimum eccentricity
� Diameter: Maximum eccentricity
� Global efficiency: Inverse of the characteristic path

length2

Network measures were examined for multicollinearity
using Belsley collinearity diagnostics (Collintest, MATLAB
R2015a) to ensure that only unique predictors were included
in our analysis. The remaining network measures were ana-
lyzed using the multivariate general linear models described
below. We were also interested in identifying potential inter-
actions between our risk factors.

Subnetwork analysis

As AD preferentially impacts the DMN, we repeated the
analysis for this subnetwork by adapting the AAL atlas
(Tzourio-Mazoyer et al., 2002) based on the data from
Power and colleagues (2011). The DMN graphs comprised
22 nodes from each hemisphere encompassing the frontal,
temporal, and parietal lobes, including the precuneus, cingu-
late gyrus, and hippocampus (Fig. 2). To investigate if any
changes were specific to the DMN, we analyzed a separate
control subnetwork—the visual system (Wang et al., 2012),
by adjusting the regions of interest specified in Power and
colleagues (2011). The resulting integrated weighted struc-
tural brain networks were composed of 16 nodes from the
left and right hemispheres: inferior temporal gyrus, fusiform
gyrus, superior/middle/inferior occipital gyrus, lingual
gyrus, cuneus, calcarine fissure, and the surrounding cortex
(Fig. 2).

1https://github.com/stdimitr/integrated_structural_brain_networks
2https://github.com/stdimitr/Network_Metrics
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Hub analysis

Hubs are nodes of a network that are highly connected to
other nodes and act as bridges that facilitate the transfer of
signals in the brain, contributing to its integration abilities
(van den Heuvel and Sporns, 2013). Crucially, hubs appear
to play a role in AD (Buckner et al., 2009). We split the
cohort into risk factor groups—positive (N = 59) versus neg-
ative family history (N = 104), APOE4 carriers (N = 64) ver-
sus noncarriers (N = 100), centrally obese (N = 102) versus
healthy weight (N = 63)—to explore whether hubs changed
as a function of risk factor profile in healthy individuals.
Hubs were identified across the whole brain for each partic-
ipant by ranking nodal betweenness centrality and strength,
where higher scores indicate hubs. In addition, nodal local
efficiency and clustering coefficients were ranked, with
smaller values indicating hubs. A node was defined as a
hub when it was in the top 20% for global measures and

the lowest 20% for local measures. Using replicator dynam-
ics (Dimitriadis et al., 2010; Neumann et al., 2005), hubs that
were consistently present across the individual risk factor co-
horts were determined.3 This analysis was then repeated
using data from the DMN and visual subnetworks to identify
internally important nodes.

Statistical analyses

In SPSS v26 (IBM Corp., 2019), we performed multivar-
iate general linear models with factors of APOE4 carrier/
noncarrier, FH/no family history, and WHR obese/healthy
on dependent variables; mean clustering coefficient, charac-
teristic path length, eccentricity, global efficiency, diameter,
and radius. The analyses were adjusted for covariates: age,
years of education, and sex. To ensure assumptions were
met, normality of residuals was tested using Kolmogorov–
Smirnov tests. We adopted Belsley collinearity diagnostics
(MATLAB R2015a) to assess multicollinearity effects be-
tween the estimated network metrics.

Results

Inclusion of metrics into integrated networks
using correlation and collinearity tests

A multicollinearity test was performed on the 10 variables
with a default cutoff of 30 for the condition index and 0.5 for
proportion of variance decomposition. This analysis revealed
multicollinearity between AxD, MD, and RD (Table 3). Cor-
relation coefficients (Table 4) were calculated between all 10
connectivity metrics. We used a cutoff of R > 0.6 to flag
strong correlations to investigate further. PS, NS, and TV
were highly intercorrelated, and for that reason we only in-
cluded NS in our analysis. AxD, MD, and RD exhibit multi-
collinearity and both AxD and RD correlated strongly with

FIG. 1. An example of the conservative threshold added to all dMRI connectivity matrices. (A) FA connectivity matrix for
one participant before thresholding. (B) After a conservative threshold of five streamlines was applied to FA for the same
participant. dMRI, diffusion-weighted magnetic resonance imaging; FA, fractional anisotropy.

Table 2. Abbreviations Used

for the Diffusion-Weighted Magnetic

Resonance Imaging Metrics

Name of dMRI metric Abbreviation

Number of streamlines NS
Percentage of tracts PS
Average tract length ATL
Euclidean distance ED
Streamline density SLD
Tract volume TV
Mean diffusivity MD
Radial diffusivity RD
Axial diffusivity AxD
Fractional anisotropy FA

This table defines the abbreviations used throughout the article for
each of the dMRI metrics.

dMRI, diffusion-weighted magnetic resonance imaging. 3https://github.com/stdimitr/consistent_hubs_cohort
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FA (R = 0.6036, p < 10�8 and R =�0.6721, p < 10�8, respec-
tively)—thus these two metrics were excluded. This resulted
in a final inclusion of ATL, SLD, FA, ED, MD, and NS. We
reran the correlation and multicollinearity analysis on these
metrics and confirmed no strong correlations (Table 4) or
multicollinearity. These six metrics were then combined
into a single graph (Fig. 3) with an algorithm introduced in
our previous study (Dimitriadis et al., 2017b).

Exclusion of mean eccentricity from further analyses

Belsley collinearity diagnostics applied over the adop-
ted set of network metrics flagged multicollinearity be-
tween diameter and mean eccentricity using whole-brain

network measures (Table 5). We therefore excluded
the eccentricity from further analyses and kept the diam-
eter, which in combination with the radius informs us
about the lower (radius) and upper limits (diameter) of
eccentricity.

Whole-brain analysis

Kolmogorov–Smirnov tests for normality revealed non-
Gaussian distributions for all network measures ( p < 0.05,
Table 6 and Supplementary Fig. S1). To alleviate this,
diameter, characteristic path length, and radius were log
transformed to reduce positive skew, and efficiency and
clustering coefficients were squared to reduce negative

FIG. 2. Nodes included in the subnetwork analysis for the DMN and visual system. The top figure (A) shows the 44
nodes included in the DMN adapted from Power et al. (2011), whereas the bottom figure (B) shows the 16 nodes included
in the visual network adapted from Power et al. (2011). Images were created using ExploreDTI v4.8.6. DMN, default mode
network.
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skew. After data cleaning, the diameter, characteristic path
length, and radius mimicked normal distributions when
assessed by Kolmogorov–Smirnov tests ( p > 0.05), but effi-
ciency (skew =�0.688, SEskew = 0.192, kurtosis = 0.516,
SEkurtosis = 0.381) and clustering coefficients (skew =�0.154,
SEskew = 0.192, kurtosis = 1.639, SEkurtosis = 0.381) were non-
normal. Despite the latter, the analysis was continued as the
graphs, when inspected, appeared improved beyond the orig-
inal in regard to skew (Supplementary Fig. S1), and there-
fore, we decided that the data complied with general linear
model assumptions despite formally failing the tests. One ex-
treme outlier was present in the diameter data after transfor-
mation (defined as >3 · interquartile range), and thus, we
excluded this participant from further whole-brain analyses.

Omnibus multivariate analyses revealed no significant main
or interaction effects ( p > 0.05, Table 7), suggesting that
there were no differences in whole-brain network measures
between individuals who carry APOE4 versus noncarriers,
have an FH versus no FH, and obese versus healthy WHR.

Subnetwork analyses

We then investigated whether any individual differences
were occurring at a subnetwork level.

DMN analysis. Kolmogorov–Smirnov tests revealed
non-normality for all network measures calculated from the
DMN integrated graphs (Table 6 and Supplementary
Fig. S2). To correct for this, the diameter, characteristic

Table 3. Belsley Collinearity Diagnostics Results for Diffusion-Weighted Magnetic

Resonance Imaging Connectivity Matrices

sValue CondIdx AxD ATL ED FA MD NS PS RD SLD TV

2.7153 1 0 0.001 0.0013 0.0001 0 0.0004 0.0005 0 0.0029 0.001
1.3103 2.0722 0 0.0021 0.0047 0.0001 0 0.0074 0.0104 0 0 0.0082
0.7989 3.399 0 0.0073 0.0065 0 0 0.0002 0.0005 0 0.4447 0.0034
0.3047 8.91 0 0.0299 0.3087 0.0001 0 0.0155 0.1257 0 0.0001 0.3775
0.2837 9.5698 0 0.0521 0.3839 0.0063 0 0.0018 0.043 0 0.3094 0.1527
0.2258 12.0263 0 0.7593 0.1808 0 0 0.0041 0.1228 0 0.1427 0.1425
0.1587 17.1051 0 0.0497 0.0493 0.0007 0 0.969 0.693 0 0.0078 0.3067
0.1433 18.9544 0 0.085 0.0034 0.2084 0 0.0016 0.0037 0 0.0732 0.0074
0.0414 65.5353 0 0.0135 0.0614 0.7839 0 0 0.0003 0 0.0192 0.0005
0 2.26E114 1 0 0.0001 0.0004 1 0 0 1 0 0

Belsley collinearity diagnostics run across the dMRI metrics demonstrating multicollinearity between AxD, MD, and RD. The bold num-
bers identify metrics that meet our exclusion criteria, condition index >30, and variance decomposition >0.5.

Abbreviations of the dMRI metrics are defined in Table 2.
CondIdx, condition index; sValue, singular values.

Table 4. Correlation Coefficients (R) Determined by MATLAB (corrcoef)

Between the Individual Connectivity Metrics (Abbreviations Defined in Table 2)

ATL AxD SLD FA ED MD NS PS RD TV

ATL 1
AxD 0.4033 1
SLD �0.5558 �0.2418 1
FA 0.4772 0.6036 �0.4588 1
ED 0.5727 0.1300 �0.4509 0.2474 1
MD 0.1638 0.7722 0.0311 �0.0300 �0.0089 1
NS �0.2631 �0.0373 0.1426 0.0101 �0.4070 �0.0680 1
PS �0.2599 �0.0270 0.1253 0.0262 �0.4122 �0.0679 0.9564 1
RD �0.1635 0.1630 0.2989 �0.6721 �0.1485 0.7527 �0.0669 �0.0775 1
TV �0.0986 0.0446 0.0322 0.0871 �0.3529 �0.0146 0.9021 0.8600 �0.0689 1

ATL SLD FA ED MD NS

After excluding AxD, PS, RD, and TV
ATL 1
SLD �0.5558 1
FA 0.4772 �0.4588 1
ED 0.5727 �0.4509 0.2474 1
MD 0.1638 0.0311 �0.0300 �0.0089 1
NS �0.2631 0.1426 0.0101 �0.4070 �0.0680 1

Bold numbers identify intercorrelations with an R > 0.6. The lower half of the table shows reduced intercorrelation coefficients after the
analysis has been rerun with AxD, PS, RD, and TV excluded.

THE EFFECT OF AD RISK ON BRAIN CONNECTIVITY 7
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path length, and radius were log transformed and the effi-
ciency was squared. Despite being non-Gaussian as deter-
mined by Kolmogorov–Smirnov tests, the distribution of
residuals for mean clustering coefficients was not too
heavily skewed. We identified nine extreme outliers

(>3 · interquartile range) within efficiency data and one
within clustering coefficients, and thus, these were re-
moved from the analysis. After data cleaning, the charac-
teristic path length (skew = 0.508, SEskew = 0.197,
kurtosis = 0.516, SEkurtosis = 0.381), efficiency

Table 6. Kolmogorov–Smirnov Test Results for the Whole-Brain, Default Mode Network

and Visual System

Standardized residual Statistic DF p

Before data cleaning
Whole

Diameter 0.078 161 0.019
Global efficiency 0.114 161 0.000
Characteristic path length 0.082 161 0.010
Radius 0.083 161 0.008
Clustering coefficient 0.115 161 0.000

DMN
Diameter 0.118 161 0.000
Global efficiency 0.200 161 0.000
Characteristic path length 0.158 161 0.000
Radius 0.120 161 0.000
Clustering coefficient 0.146 161 0.000

Visual
Diameter 0.128 161 0.000
Global efficiency 0.128 161 0.000
Characteristic path length 0.124 161 0.000
Radius 0.135 161 0.000
Clustering coefficient 0.086 161 0.006

After data cleaning
Whole

Logged diameter 0.067 160 0.080
Squared global efficiency 0.091 160 0.003
Logged characteristic path length 0.047 160 0.200
Logged radius 0.053 160 0.200
Squared clustering coefficient 0.083 160 0.009

DMN
Logged diameter 0.059 151 0.200
Squared global efficiency 0.151 151 0.000
Logged characteristic path length 0.084 151 0.010
Logged radius 0.060 151 0.200
Clustering coefficient 0.123 151 0.000

Visual
Logged diameter 0.091 161 0.003
Squared global efficiency 0.108 161 0.000
Logged characteristic path length 0.082 161 0.009
Logged radius 0.088 161 0.004
Squared clustering coefficient 0.060 161 0.200

Lack of normality of standardized residuals assessed with Kolmogorov–Smirnov tests of the whole-brain, DMN and visual system. The lower
part of the table demonstrates how the normality of the metrics is improved after data cleaning (removing outliers and transforming the data).
p Values are reported to 3 decimal places.

DF, degrees of freedom; DMN, default mode network.

Table 5. Belsley Collinearity Diagnostics Results: Network Measures

sValue CondIdx Diameter Efficiency Lambda Radius Clustering coefficient Eccentricity

2.4172 1.0000 0.0001 0.0003 0.0001 0.0000 0.0004 0.0000
0.3748 6.4489 0.0006 0.0257 0.0038 0.0010 0.0374 0.0003
0.0890 27.1550 0.0440 0.3625 0.1359 0.0011 0.5189 0.0002
0.0812 29.7691 0.0640 0.5520 0.1607 0.0000 0.3796 0.0018
0.0395 61.2534 0.2325 0.0107 0.2996 0.7250 0.0146 0.0004
0.0205 118.0614 0.6589 0.0487 0.4000 0.2729 0.0492 0.9972

This table demonstrates multicollinearity between whole-brain diameter and mean eccentricity when assessed with Belsley collinearity
diagnostics. Bold numbers indicate metrics that meet our exclusion criteria, condition index >30, and variance decomposition >0.5.

Lambda, characteristic path length.

THE EFFECT OF AD RISK ON BRAIN CONNECTIVITY 9



(skew =�1.522, SEskew = 0.197, kurtosis = 3.106, SEkurto-

sis = 0.392), and clustering coefficients (skew =�0.599,
SEskew = 0.197, kurtosis = 1.131, SEkurtosis = 0.392) were not
formally normal when reassessed with Kolmogorov–Smirnov
tests, however, the analysis was continued (Supplementary
Fig. S2) as not to lose value in our raw data, as a result of an-
other round of data cleaning. Multivariate analyses revealed
no significant effects (N = 151, p > 0.05, Table 7), suggesting
that there are no differences in DMN measures as a result of
risk-factor profile.

Visual network analysis. Kolmogorov–Smirnov tests
revealed non-normality for all six network measures for
the visual system (Table 6 and Supplementary Fig. S3).
Following the same process as before, the diameter, char-
acteristic path length, and radius were log transformed
and the efficiency and clustering coefficients were squared.
No outliers were identified in the transformed metrics.

Diameter (skew = 0.852, SEskew = 0.192, kurtosis = 1.004,
SEkurtosis = 0.38), characteristic path length (skew = 0.0614,
SEskew = 0.191, kurtosis = 1.385, SEkurtosis = 0.38), radius
(skew = 0.751, SEskew = 0.191, kurtosis = 1.164, SEkurtosis =
0.38), and efficiency (skew =�0.956, SEskew = 0.191,
kurtosis = 1.241, SEkurtosis = 0.38) were non-normal, how-
ever, the analysis was continued (Supplementary
Fig. S3), with a sample size of 161, as the distributions
were improved beyond the untransformed metrics to a
point that we believe meets the underlying assumptions
of the analysis. The general linear model (N = 161)
revealed no significant multivariate effects (Table 7).

Analysis of network hubs in the whole brain

Replicator dynamics identified hubs consistent across the
individual risk factor groups. Individuals with no FH
(N = 104) had hubs located in the left and right Rolandic
operculum, right inferior parietal gyrus, left angular gyrus,
and right Heschl’s gyrus, whereas individuals with a positive
FH (N = 59) had hubs at the right Rolandic operculum, left
inferior frontal gyrus opercular part, left and right paracentral
lobule, and the right Heschl’s gyrus (Fig. 4). Individuals who
had a healthy WHR (N = 63), and thus considered at less risk
of developing AD, had hubs within the left inferior frontal
gyrus opercular part, right Rolandic operculum, right inferior
parietal gyrus, and right Heschl’s gyrus, whereas individuals
who were centrally obese (N = 102) had hubs within the right
Rolandic operculum, right paracentral lobule, and both left
and right Heschl’s gyri (Fig. 4). Participants who were neg-
ative for the APOE4 allele (and thus considered low risk) had
hubs in the left inferior frontal gyrus opercular part, right
Rolandic operculum, right precuneus, and right Heschl’s
gyrus (N = 100), whereas APOE4-positive individuals
(N = 64) had hubs in the right Rolandic operculum, right in-
ferior parietal gyrus, left angular gyrus, right paracentral lob-
ule, and right Heschl’s gyrus (Fig. 4).

To summarize the above-described pattern, the right
Rolandic operculum and Heschl’s gyrus remain present as
hubs regardless of risk factor. In contrast, at-risk individuals
(obese, positive FH, and APOE4 carriers) consistently have a
hub in the right paracentral lobule, which is absent in their
respective low-risk group (Table 8 and Fig. 4).

Analysis of internally important nodes/hubs in the DMN

Hubs were identified within the left and right opercular
parts of the inferior frontal gyrus, right inferior parietal
gyrus, and left angular gyrus in individuals with no FH,
whereas individuals with FH had hubs within the left and
right opercular parts of the inferior frontal gyrus, right infe-
rior parietal gyrus, left angular gyrus, and right precuneus.
Both individuals of healthy WHR and individuals who
were obese had hubs within the left and right opercular
parts of the inferior frontal gyrus, right inferior parietal
gyrus, and left angular gyrus. In participants without the
APOE4 allele, hubs were identified in the left and right oper-
cular parts of the inferior frontal gyrus, right inferior parietal
gyrus, left angular gyrus, and right precuneus, whereas indi-
viduals who carry APOE4 had hubs within the left and right
opercular parts of the inferior frontal gyrus, left and right in-
ferior parietal gyri, and left angular gyrus.

Table 7. Multivariate Results

Effect F DF p

Whole-brain analysis
Intercept 48.648 5, 145 0.000
Sex 0.841 5, 145 0.523
Age 1.325 5, 145 0.257
Years of education 1.904 5, 145 0.097
FH 1.307 5, 145 0.264
APOE4 0.351 5, 145 0.881
WHR 0.981 5, 145 0.432
FH · APOE4 1.019 5, 145 0.409
FH · WHR 0.532 5, 145 0.752
APOE4 · WHR 0.533 5, 145 0.751
FH · APOE4 · WHR 1.666 5, 145 0.147

DMN analysis
Intercept 84.361 5, 136 0.000
Sex 1.315 5, 136 0.261
Age 1.867 5, 136 0.104
Years of education 1.010 5, 136 0.414
FH 1.523 5, 136 0.187
APOE4 0.924 5, 136 0.567
WHR 0.201 5, 136 0.961
FH · APOE4 0.242 5, 136 0.242
FH · WHR 0.733 5, 136 0.733
APOE4 · WHR 0.940 5, 136 0.940
FH · APOE4 · WHR 0.444 5, 136 0.444

Visual system analysis
Intercept 73.555 5, 146 0.000
Sex 0.534 5, 146 0.750
Age 1.989 5, 146 0.084
Years of education 1.314 5, 146 0.261
FH 0.351 5, 146 0.881
APOE4 0.901 5, 146 0.482
WHR 1.179 5, 146 0.322
FH · APOE4 0.284 5, 146 0.921
FH · WHR 0.986 5, 146 0.429
APOE4 · WHR 1.365 5, 146 0.241
FH · APOE4 · WHR 2.089 5, 146 0.070

There were no significant differences in network measures as a
function of risk factors: FH, APOE4, and WHR across the whole-
brain, DMN or a control subnetwork (visual system). p Values are
reported to 3 decimal places.

F, F statistic.

10 CLARKE ET AL.



As opposed to the analysis of the whole brain, there were
no consistent differences of hubs within the DMN as a result
of risk factor profile. Individuals without an FH compared
with those with an FH gained a hub within the right precu-
neus, whereas this hub was lost in the transition between
APOE4 noncarriers and carriers and instead they gained a
hub in the left inferior parietal gyrus (Table 8).

Analysis of internally important nodes/hubs
in the visual subnetwork

Replicator dynamics identified internally important nodes
within the right calcarine fissure, right middle occipital lobe,
and right inferior occipital lobe of the visual subnetwork.

Each of these hubs was identified regardless of risk factor
profile, suggesting that AD risk has no effect on hubs within
the visual network (Table 8).

Discussion

To the best of our knowledge, our study investigated for
the first time the effects of APOE4 genotypes, central obe-
sity, and FH on the graph theoretical metrics of structural
brain networks derived via tractography, in cognitively
healthy adults. The advantage of our analysis methods over
conventional structural network analyses lies in the use of in-
tegrated structural network matrices, which combine, in a
data-driven manner, multiple metrics of the white matter

FIG. 4. Nodes identified as hubs,
change dependent on risk factor pro-
file. This figure shows the changes in
nodes defined as hub regions, when
you transition from a low-risk group to
a high-risk group. A size scale is used
to define hub changes, large symbols
indicate gained hubs whereas small
symbols represent those hubs which
are lost. The intermediate size indi-
cates hubs that remain. (A) Comparing
individuals without an FH with those
with a positive FH indicates that two
hubs remain unchanged, whereas three
are gained and three are lost. (B)
Comparing APOE4 noncarriers with
carriers results in a gain of three hubs,
loss of two hubs, but leaves two hubs
unchanged. (C) In comparison with
healthy individuals, obese participants
gained two hubs, lost two hubs,
and two hubs remain APOE4,
apolipoprotein-E e4; FH, family
history of dementia.

THE EFFECT OF AD RISK ON BRAIN CONNECTIVITY 11



tracts, rather than arbitrarily using one metric. This means
that more information is included in the individual structural
network matrices.

Graph theoretical metrics expressing segregation and inte-
gration of each participant’s structural brain connectome
were calculated for the whole brain and for two subnetworks,
the DMN (which is known to be impaired in AD) and the vi-
sual network (used here as a control network). Multivariate
analyses revealed no significant effects for either whole
brain or for the subnetworks, which suggests that there
were no differences in network measures for any of the
risk factors (APOE4, FH, or central obesity). This interesting
finding, which indicates that the integration and segregation

properties of these structural networks were preserved in
asymptomatic individuals at heightened risk of developing
AD, could point to a possible compensatory mechanism that
leads to minimal functional disruption (as indicated by the
normal cognitive abilities of our sample). We note, however,
that it is not known when, or indeed if, any of these indi-
viduals would develop AD. Cortical thickness-based structural
brain networks, which reflect different organizational
properties to the tractography-derived networks used in our
analysis, demonstrated altered properties in subjects with
mild cognitive impairment (MCI) and AD compared with
healthy controls following the progress of the disease (Zhou
and Liu, 2013). In addition, Brown and colleagues (2011)

Table 8. Hub Changes As a Function of Risk Factor

Risk factor change Hubs that remain Hubs that are lost Hubs that are gained

Whole-brain network
Negative FH

/ Positive FH
Right Rolandic operculum
Right Heschl’s gyrus

Left Rolandic operculum
Right inferior parietal gyrus
Left angular gyrus

Left inferior frontal gyrus
opercular part

Left paracentral lobule
Right paracentral lobule

APOE4 noncarrier
/ APOE4 carrier

Right Rolandic operculum
Right Heschl’s gyrus

Left inferior frontal gyrus
opercular part

Right precuneus

Right inferior parietal gyrus
Left angular gyrus
Right paracentral lobule

WHR healthy
/ WHR obese

Right Rolandic operculum
Right Heschl’s gyrus

Left inferior frontal gyrus
opercular part

Right inferior parietal gyrus

Right paracentral lobule
Left Heschl’s gyrus

DMN
Negative FH

/ Positive FH
Left inferior frontal gyrus

opercular part
Right inferior frontal gyrus

opercular part
Right inferior parietal gyrus
Left angular gyrus

N/A Right precuneus

APOE4 noncarrier
/ APOE4 carrier

Left inferior frontal gyrus
opercular part

Right inferior frontal gyrus
opercular part

Right inferior parietal gyrus
Left angular gyrus

Right precuneus Left inferior parietal gyrus

WHR healthy
/ WHR obese

Left inferior frontal gyrus
opercular part

Right inferior frontal gyrus
opercular part

Right inferior parietal gyrus
Left angular gyrus

N/A N/A

Visual subnetwork
Negative FH

/ Positive FH
Right calcarine fissure
Right middle occipital lobe
Right inferior occipital lobe

N/A N/A

APOE4 noncarrier
/ APOE4 carrier

Right calcarine fissure
Right middle occipital lobe
Right inferior occipital lobe

N/A N/A

WHR healthy
/ WHR obese

Right calcarine fissure
Right middle occipital lobe
Right inferior occipital lobe

N/A N/A

For the whole-brain analysis (top): The right Rolandic operculum and right Heschl’s gyrus remain constant when switching from a low-
risk—no FH, no APOE4 allele, healthy WHR score—to a high-risk group (FH, APOE4, centrally obese). Whereas the right paracentral lob-
ule is consistently gained. Furthermore, a few more hubs are gained or lost, although inconsistent across risk factor groups. In the DMN
analysis (middle): Individuals with an FH had a hub in the right precuneus in contrast to those with no FH. Conversely, this hub is lost be-
tween individuals with no APOE4 in comparison with those who carry APOE4 and instead a hub is gained within the left inferior parietal
gyrus. In the visual subnetwork analysis (bottom): Hubs within the right calcarine fissure, right middle occipital lobe, and right inferior oc-
cipital lobe remained in all risk factor manipulations.
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found that tractography-derived structural brain networks in
older APOE4 carriers exhibited loss of local interconnectivity
in contrast to those of older noncarriers, and that the carriers
had impaired memory abilities as well. Finally, Ma and col-
leagues (2017) found that structural brain connectivity was dis-
rupted in adults (older than 55 years of age) as a result of an
interaction between APOE4 status and developed MCI, more
so than it was for APOE4 carriers only. These findings may
suggest that structural connectivity changes are not present
in cognitively healthy individuals at risk, and reflect a manifes-
tation of established disease and/or of older age.

Looking at the hubs of the whole-brain structural networks
of low-risk versus high-risk individuals, we identified that
the three subgroups of high-risk individuals (centrally
obese, positive FH, and positive APOE4) when compared
with individuals in the respective low-risk groups (normal
WHR, negative FH, and negative APOE4) consistently
exhibited a hub in the right paracentral lobule. Importantly,
there were no consistent differences of hubs within the
DMN and visual network as a result of risk factor profile.
The paracentral lobule is located on the medial surface of
the cerebral hemisphere and includes parts of both the frontal
and parietal lobes. It has gyral projections to the medial fron-
tal gyrus, cingulate sulcus, and precuneus and sulcal projec-
tions to the paracentral, cingulate, precentral sulci, and the
pars marginalis of cingulate sulcus. The paracentral lobule
controls motor and sensory innervations of the contralateral
lower limb. In a recent study, widespread cortical thinning
in the left hemisphere regions, including the pericalcarine
cortex, supramarginal gyrus, cuneus cortex, lateral occipital
cortex, precuneus cortex, fusiform gyrus, superior frontal
gyrus, lateral occipital cortex, entorhinal cortex, inferior pa-
rietal cortex, isthmus-cingulate cortex, postcentral gyrus, su-
perior parietal cortex, caudal middle frontal gyrus, insula
cortex, precentral gyrus, and paracentral lobule, was ob-
served in patients with AD compared with normal controls
(Yang et al., 2019). Another structural MRI study on nonde-
mented older subjects revealed a modulation of the cortical
thickness covariance between the left parahippocampal
gyrus and left medial cortex, supplementary motor area,
the left medial superior frontal gyrus, and paracentral lobule
driven by the interaction of the rs405509 genotype and age
(Chen et al., 2015). In a previous CARDS analysis on the
same cohort, we explored the impact of APOE4, FH and
WHR on white matter microstructure (Mole et al., 2020a).
Individuals with the highest genetic risk (FH+ and APO-E4)
showed a reduced macromolecular proton fraction (MPF)
from quantitative magnetization transfer in the right parahip-
pocampal cingulum associated with obesity. In addition,
APOE4-related MPF reductions were apparent in the left thal-
amus (Mole et al., 2020b). Furthermore, Rs405509 is an AD-
related polymorphism located in the APOE promoter region
that regulates the transcriptional activity of the APOE gene.
Abnormal structural brain connectivity was identified between
the angular gyrus, superior parietal gyrus, precuneus, posterior
cingulum, putamen, precentral gyrus, postcentral gyrus, and
paracentral lobule in elders with subjective cognitive decline
compared with healthy controls (Kim et al., 2019). These ab-
errant structural connections were also associated with cogni-
tive scores.

In addition to MRI, PET imaging has identified reduced
metabolism in the parietal areas in both APOE4 carriers

with MCI (Paranjpe et al., 2019) and clinical AD (Mosconi
et al., 2004). Furthermore, magnetoencephalography (MEG)
in young healthy APOE4 carriers (Koelewijn et al., 2019)
has identified hyperconnectivity in the right parietal re-
gions, consistent with the here reported findings. Thus,
the novel phenotype we have identified can potentially pre-
dict the development of symptoms in a longitudinal study of
the same cohort, it could be used as an early biomarker of
dementia.

Assessment of our analysis

Our findings would benefit from replication in a larger
sample due to the fragmentation of the initial sample into
subgroups with the different risk profiles. It would also be
beneficial for structural network analyses to include mea-
sures that are believed to play a more important role in the
functional performance of the brain, such as myelination of
the white matter tracts (Messaritaki et al., 2021) and axonal
diameter. We finally note that the thresholding of structural
connectivity matrices derived from tractography is still an
issue of debate. Buchanan and colleagues (2020), Civier
and colleagues (2019), and Drakesmith and colleagues
(2015) have shown the possible effects of thresholding
when different tractography methods are used. In our analy-
sis, we adopted a modest thresholding of five streamlines, to
reduce possible false positives.

Conclusion

In conclusion, our study did not detect any changes in
structural brain networks that would imply alterations in
the integration and segregation of structural network proper-
ties in cognitively healthy individuals with different risk fac-
tors. We identified the right paracentral lobule as a hub brain
area in high-risk individuals, but not in low-risk individuals.
A longitudinal study of the same cohort with the incorpora-
tion of functional neuroimaging data could evaluate this phe-
notype further.
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