6 research outputs found

    Komplikasjoner etter gastrokirurgiske operasjoner

    No full text

    Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases

    No full text
    The Notch signaling pathway regulates developmental cell-fate decisions and has recently also been linked to inflammatory diseases. Although therapies targeting Notch signaling in inflammation in theory are attractive, their design and implementation have proven difficult, at least partly due to the broad involvement of Notch signaling in regenerative and homeostatic processes. In this review, we summarize the supporting role of Notch signaling in various inflammation-driven diseases, and highlight efforts to intervene with this pathway by targeting Notch ligands and/or receptors with distinct therapeutic strategies, including antibody designs. We discuss this in light of lessons learned from Notch targeting in cancer treatment. Finally, we elaborate on the impact of individual Notch members in inflammation, which may lay the foundation for development of therapeutic strategies in chronic inflammatory diseases

    Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture

    Get PDF
    Background: Organotypic tumor spheroids, a 3D in vitro model derived from patient tumor material, preserve tissue heterogeneity and retain structural tissue elements, thus replicating the in vivo tumor more closely than commonly used 2D and 3D cell line models. Such structures harbour tumorigenic cells, as revealed by xenograft implantation studies in animal models and maintain the genetic makeup of the original tumor material. The aim of our work was a morphological and proteomic characterization of organotypic spheroids derived from colorectal cancer tissue in order to get insight into their composition and associated biology. Results: Morphological analysis showed that spheroids were of about 250 μm in size and varied in structure, while the spheroid cells differed in shape and size and were tightly packed together by desmosomes and tight junctions. Our proteomic data revealed significant alterations in protein expression in organotypic tumor spheroids cultured as primary explants compared to primary colorectal cancer tissue. Components underlying cellular and tissue architecture were changed; nuclear DNA/ chromatin maintenance systems were up-regulated, whereas various mitochondrial components were down-regulated in spheroids. Most interestingly, the mesenchymal cells appear to be substantial component in such cellular assemblies. Thus the observed changes may partly occur in this cellular compartment. Finally, in the proteomics analysis stem cell-like characteristics were observed within the spheroid cellular assembly, reflected by accumulation of Alcam, Ctnnb1, Aldh1, Gpx2, and CD166. These findings were underlined by IHC analysis of Ctnnb1, CD24 and CD44, therefore warranting closer investigation of the tumorigenic compartment in this 3D culture model for tumor tissue. Conclusions: Our analysis of organotypic CRC tumor spheroids has identified biological processes associated with a mixture of cell types and states, including protein markers for mesenchymal and stem-like cells. This 3D tumor model in which tumor heterogeneity is preserved may represent an advantageous model system to investigate novel therapeutic approaches

    Antibody blockade of Jagged1 attenuates choroidal neovascularization

    No full text
    Abstract Antibody-based blocking of vascular endothelial growth factor (VEGF) reduces choroidal neovascularization (CNV) and retinal edema, rescuing vision in patients with neovascular age-related macular degeneration (nAMD). However, poor response and resistance to anti-VEGF treatment occurs. We report that targeting the Notch ligand Jagged1 by a monoclonal antibody reduces neovascular lesion size, number of activated phagocytes and inflammatory markers and vascular leakage in an experimental CNV mouse model. Additionally, we demonstrate that Jagged1 is expressed in mouse and human eyes, and that Jagged1 expression is independent of VEGF signaling in human endothelial cells. When anti-Jagged1 was combined with anti-VEGF in mice, the decrease in lesion size exceeded that of either antibody alone. The therapeutic effect was solely dependent on blocking, as engineering antibodies to abolish effector functions did not impair the therapeutic effect. Targeting of Jagged1 alone or in combination with anti-VEGF may thus be an attractive strategy to attenuate CNV-bearing diseases

    Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers

    No full text
    Objective: Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context. Approach and Results: Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1β stimulation induced rapid recruitment of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) to genomic sites occupied by NOTCH1-RBPJ (recombination signal-binding protein for immunoglobulin kappa J region) and that NOTCH1 knockdown reduced histone H3K27 acetylation at a subset of NF-κB–directed inflammatory enhancers. Conclusions: Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an infla mmatory endothelial phenotype
    corecore