112 research outputs found

    Two-fluid description of two-band superconductors

    Full text link
    We present a systematic study of the response properties of two-band (multi-gap) superconductors with spin-singlet (s-wave) pairing correlations, which are assumed to be caused by both intraband (\lambda_{ii}, i=1,2) and interband (\lambda_{12}) pairing interactions. In this first of three planned publications we concentrate on the properties of such superconducting systems in global and local thermodynamic equilibrium, the latter including weak perturbations in the stationary long-wavelength limit. The discussion of global thermodynamic equilibrium must include the solution (analytical in the Ginzburg-Landau and the low temperature limit) of the coupled self-consistency equations for the two energy gaps \Delta_i(T), i=1,2. These solutions allow to study non-universal behavior of the two relevant BCS-M\"uhlschlegel parameters, namely the specific heat discontinuity \Delta C/C_N and the zero temperature gaps \Delta_i(0)/\pi k_B T_c, i=1,2. The discussion of a local equilibrium situation includes the calculation of the supercurrent density as a property of the condensate, and the calculation of both the specific heat capacity and the spin susceptibility as properties of the gas of thermal excitations in the spirit of a microscopic two-fluid description. Non-monotonic behavior in the temperature dependences of the gaps and all these local response functions is predicted to occur particularly for very small values of the interband pair-coupling constant \lambda_{12}.Comment: 22 pages, 8 figure

    Response, relaxation and transport in unconventional superconductors

    Full text link
    We investigate the collision-limited electronic Raman response and the attenuation of ultrasound in spin-singlet d-wave superconductors at low temperatures. The dominating elastic collisions are treated within a t-matrix approximation, which combines the description of weak (Born) and strong (unitary) impurity scattering. In the long wavelength limit a two-fluid description of both response and transport emerges. Collisions are here seen to exclusively dominate the relaxational dynamics of the (Bogoliubov) quasiparticle system and the analysis allows for a clear connection of response and transport phenomena. When applied to quasi-2-d superconductors like the cuprates, it turns out that the transport parameter associated with the Raman scattering intensity for B1g and B2g photon polarization is closely related to the corresponding components of the shear viscosity tensor, which dominates the attenuation of ultrasound. At low temperatures we present analytic solutions of the transport equations, resulting in a non-power-law behavior of the transport parameters on temperature.Comment: 22 pages, 3 figure

    Electronic Raman response in anisotropic metals

    Full text link
    Using a generalized response theory we derive the electronic Raman response function for metals with anisotropic relaxation rates. The calculations account for the long--range Coulomb interaction and treat the collision operator within a charge conserving relaxation time approximation. We extend earlier treatments to finite wavenumbers (qkF|{\bf q}|\ll k_{\rm F}) and incorporate inelastic electron--electron scattering besides elastic impurity scattering. Moreover we generalize the Lindhard density response function to the Raman case. Numerical results for the quasiparticle scattering rate and the Raman response function for cuprate superconductors are presented.Comment: 5 pages, 4figures. accepted in PRB (Brief Report), in pres

    Quasiparticle relaxation rate and shear viscosity of superfluid 3He-A_1 at low temperatures

    Full text link
    Quasiparticle relaxation rate,τp1\tau_{p}^{-1}, and the shear viscosity tensor of the A_1-phase of superfluid 3He are calculated at low temperatures and melting pressure, by using Boltzmann equation approach in momentum space. The collision integral is written in terms of inscattering and outscattering collision integrals. The interaction between normal and Bogoliubov quasiparticles is considered in calculating transition probabilities in the binary, decay and coalescence processes. We obtain that both τp1\tau_{p\uparrow}^{-1} and τp1\tau_{p\downarrow}^{-1} are proportional to T2T^2 >. The shear viscosities ηxy\eta_{xy}, ηxz\eta_{xz} and ηzz\eta_{zz} are proportional to (T/Tc)2(T/T_c)^{-2}. The constant of proportionality of the shear viscosity tensor is in nearly good agreement with the experimental results of Roobol et al., and our exact theoretical calculation.Comment: 8 pages, some typos were correcte

    Nodes of the Gap Function and Anomalies in Thermodynamic Properties of Superfluid 3^3He

    Full text link
    Departures of thermodynamic properties of three-dimensional superfluid 3^3He from the predictions of BCS theory are analyzed. Attention is focused on deviations of the ratios Δ(T=0)/Tc\Delta(T=0)/T_c and [Cs(Tc)Cn(Tc)]/Cn(Tc)[C_s(T_c)-C_n(T_c)]/C_n(T_c) from their BCS values, where Δ(T=0)\Delta(T=0) is the pairing gap at zero temperature, TcT_c is the critical temperature, and CsC_s and CnC_n are the superfluid and normal specific heats. We attribute these deviations to the momentum dependence of the gap function Δ(p)\Delta(p), which becomes well pronounced when this function has a pair of nodes lying on either side of the Fermi surface. We demonstrate that such a situation arises if the P-wave pairing interaction V(p1,p2)V(p_1,p_2), evaluated at the Fermi surface, has a sign opposite to that anticipated in BCS theory. Taking account of the momentum structure of the gap function, we derive a closed relation between the two ratios that contains no adjustable parameters and agrees with the experimental data. Some important features of the effective pairing interaction are inferred from the analysis.Comment: 17 pages, 4 figure

    Surface Roughness and Effective Stick-Slip Motion

    Get PDF
    The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed. Roughness-driven contributions to hydrodynamic flows, energy dissipation, and friction force are calculated in a wide range of parameters. When the hydrodynamic decay length (the viscous wave penetration depth) is larger than the size of random surface inhomogeneities, it is possible to replace a random rough surface by effective stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly via the correlation function of random surface inhomogeneities. The effective stick-slip length is always negative signifying the effective slow-down of the hydrodynamic flows by the rough surface (stick rather than slip motion). A simple hydrodynamic model is presented as an illustration of these general hydrodynamic results. The effective boundary parameters are analyzed numerically for Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the frequency dependence of the dissipation allows one to extract the correlation radius (characteristic size) of the surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure

    Mass coupling and Q1ofimpuritylimitednormalQ^{-1} of impurity-limited normal ^3$He in a torsion pendulum

    Full text link
    We present results of the Q1Q^{-1} and period shift, ΔP\Delta P, for 3^3He confined in a 98% nominal open aerogel on a torsion pendulum. The aerogel is compressed uniaxially by 10% along a direction aligned to the torsion pendulum axis and was grown within a 400 μ\mum tall pancake (after compression) similar to an Andronikashvili geometry. The result is a high QQ pendulum able to resolve Q1Q^{-1} and mass coupling of the impurity-limited 3^3He over the whole temperature range. After measuring the empty cell background, we filled the cell above the critical point and observe a temperature dependent period shift, ΔP\Delta P, between 100 mK and 3 mK that is 2.9% of the period shift (after filling) at 100 mK. The Q1Q^{-1} due to the 3^3He decreases by an order of magnitude between 100 mK and 3 mK at a pressure of 0.14±0.030.14\pm0.03 bar. We compare the observable quantities to the corresponding calculated Q1Q^{-1} and period shift for bulk 3^3He.Comment: 8 pages, 3 figure

    The symmetry of the superconducting order parameter in PuCoGa5_5

    Full text link
    The symmetry of the superconducting order parameter in single-crystalline PuCoGa5_5 (Tc=18.5T_{\rm c} = 18.5 K) is investigated via zero- and transverse- field muon spin relaxation (μ\muSR) measurements, probing the possible existence of orbital and/or spin moments (time reversal-symmetry violation TRV) associated with the superconducting phase and the in-plane magnetic-field penetration depth λ(T)\lambda(T) in the mixed state, respectively. We find no evidence for TRV, and show that the superfluid density, or alternatively, Δλ(T)=λ(T)λ(0)\Delta\lambda(T) = \lambda(T) - \lambda(0), are T\propto T for T/Tc0.5T/T_{\rm c} \leq 0.5. Taken together these measurements are consistent with an even-parity (pseudo-spin singlet), d-wave pairing state.Comment: 4 pages, 5 figure
    corecore