6 research outputs found

    Immobilization of selenium by Mg-bearing minerals and its implications for selenium removal from contaminated water and wastewater

    Get PDF
    This study examines the possible immobilization of Se(VI) by Mg-bearing hydrotalcite and serpentine-like minerals. Selenate immobilization was carried out via adsorption and coprecipitation reactions under alkaline conditions. The effects of Mg/Al ratios, temperature and initial Se concentration on the adsorption and/or coprecipitation of Se6+ onto these Mg-bearing minerals were examined. The sorption mechanism of Se(VI) was examined by XAFS analysis to give account of its local coordination environment. The results showed that Se(VI) sorption behavior by hydrotalcite and serpentine-like minerals was mainly influenced by their Mg/Al ratio. Higher removal efficiency of Se(VI) (> 60 and 90% at 100 and 10 ppm initial Se concentration) was observed during coprecipitation onto hydrotalcite and serpentine-like phases with Mg/Al ratios of 2 and 1.25, respectively. The formation of Mg-bearing minerals was enhanced at higher temperature (at 75 degrees C) but the effect of temperature in Se(VI) immobilization was very minimal. Selenate was mainly retained via outer-sphere complexation but an irreversible fraction of sorbed selenate (about 20%) was observed in these mineral phases. In overall, this study has several important implications in the possible application of hydrotalcite and aluminian serpentine in Se(VI) immobilization

    Solid-phase partitioning of mercury in artisanal gold mine tailings from selected key areas in Mindanao, Philippines, and its implications for mercury detoxification

    Get PDF
    The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg(-1), respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg(-1) for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines

    Utilization of Palm Oil Fuel Ash (POFA) as an Admixture for the Synthesis of a Gold Mine Tailings-Based Geopolymer Composite

    No full text
    The repurposing of gold (Au) mine tailings from artisanal and small-scale mining (ASGM) operations via alkali activation technology is a promising strategy for waste reduction in developing countries. Direct activation of mine tailings, however, is challenging because these materials contain relatively low aluminum (Al)-bearing minerals. In this study, palm oil fuel ash (POFA) was elucidated as a high Al-bearing waste derived-admixture for the synthesis of an ASGM tailings-based geopolymer composite. Semi-quantitative XRD analysis showed that the tailings contained quartz (SiO2) (~58%), pyrite (FeS2) (~20%) and calcite (CaCO3) (~15%) with minor to trace amounts of aluminosilicates (~7%). Substantial amounts of environmentally regulated pollutants such as mercury (Hg) (40 mg/kg), lead (Pb) (8430 mg/kg) and arsenic (As) (300 mg/kg) were also found in the tailings. SEM-EDS, XRD and ATR-FTIR results showed the successful formation of a hybrid geopolymer-CASH matrix, which improved the unconfined compressive strength (UCS) of geopolymer composites from ~5 MPa to ~7 MPa. Furthermore, POFA did not significantly affect the thermal resistivity of geopolymer composites based on thermal analysis. Finally, the TCLP results showed that the Pb leaching concentrations from ASGM tailings exceeded environmental standards (~15,000 µg/L), which was suppressed after alkali activation to 300–500 µg/L. This means that POFA addition to ASGM tailings-based geopolymer composite improved not only its applicability as backfill, pavements and bricks but also its ability to immobilize toxic elements
    corecore