4,270 research outputs found
Einstein's fluctuation formula. A historical overview
A historical overview is given on the basic results which appeared by the
year 1926 concerning Einstein's fluctuation formula of black-body radiation, in
the context of light-quanta and wave-particle duality. On the basis of the
original publications (from Planck's derivation of the black-body spectrum and
Einstein's introduction of the photons up to the results of Born, Heisenberg
and Jordan on the quantization of a continuum) a comparative study is presented
on the first line of thoughts that led to the concept of quanta. The nature of
the particle-like fluctuations and the wave-like fluctuations are analysed by
using several approaches. With the help of the classical probability theory, it
is shown that the infinite divisibility of the Bose distribution leads to the
new concept of classical poissonian photo-multiplets or to the binary
photo-multiplets of fermionic character. As an application, Einstein's
fluctuation formula is derived as a sum of fermion type fluctuations of the
binary photo-multiplets.Comment: 34 page
Gravitation, electromagnetism and the cosmological constant in purely affine gravity
The Eddington Lagrangian in the purely affine formulation of general
relativity generates the Einstein equations with the cosmological constant. The
Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, which
has the form of the Maxwell Lagrangian with the metric tensor replaced by the
symmetrized Ricci tensor, is dynamically equivalent to the Einstein-Maxwell
Lagrangian in the metric formulation. We show that the sum of the two affine
Lagrangians is dynamically inequivalent to the sum of the analogous Lagrangians
in the metric-affine/metric formulation. We also show that such a construction
is valid only for weak electromagnetic fields. Therefore the purely affine
formulation that combines gravitation, electromagnetism and the cosmological
constant cannot be a simple sum of terms corresponding to separate fields.
Consequently, this formulation of electromagnetism seems to be unphysical,
unlike the purely metric and metric-affine pictures, unless the electromagnetic
field couples to the cosmological constant.Comment: 14 pages, extended and combined with gr-qc/0701176; published versio
The Effects of Next-Nearest-Neighbor Interactions on the Orientation Dependence of Step Stiffness: Reconciling Theory with Experiment for Cu(001)
Within the solid-on-solid (SOS) approximation, we carry out a calculation of
the orientational dependence of the step stiffness on a square lattice with
nearest and next-nearest neighbor interactions. At low temperature our result
reduces to a simple, transparent expression. The effect of the strongest trio
(three-site, non pairwise) interaction can easily be incorporated by modifying
the interpretation of the two pairwise energies. The work is motivated by a
calculation based on nearest neighbors that underestimates the stiffness by a
factor of 4 in directions away from close-packed directions, and a subsequent
estimate of the stiffness in the two high-symmetry directions alone that
suggested that inclusion of next-nearest-neighbor attractions could fully
explain the discrepancy. As in these earlier papers, the discussion focuses on
Cu(001).Comment: 8 pages, 3 figures, submitted to Phys. Rev.
Mass as a Relativistic Quantum Observable
A field state containing photons propagating in different directions has a
non vanishing mass which is a quantum observable. We interpret the shift of
this mass under transformations to accelerated frames as defining space-time
observables canonically conjugated to energy-momentum observables. Shifts of
quantum observables differ from the predictions of classical relativity theory
in the presence of a non vanishing spin. In particular, quantum redshift of
energy-momentum is affected by spin. Shifts of position and energy-momentum
observables however obey simple universal rules derived from invariance of
canonical commutators.Comment: 5 pages, revised versio
On the Trace-Free Einstein Equations as a Viable Alternative to General Relativity
The quantum field theoretic prediction for the vacuum energy density leads to
a value for the effective cosmological constant that is incorrect by between 60
to 120 orders of magnitude. We review an old proposal of replacing Einstein's
Field Equations by their trace-free part (the Trace-Free Einstein Equations),
together with an independent assumption of energy--momentum conservation by
matter fields. While this does not solve the fundamental issue of why the
cosmological constant has the value that is observed cosmologically, it is
indeed a viable theory that resolves the problem of the discrepancy between the
vacuum energy density and the observed value of the cosmological constant.
However, one has to check that, as well as preserving the standard cosmological
equations, this does not destroy other predictions, such as the junction
conditions that underlie the use of standard stellar models. We confirm that no
problems arise here: hence, the Trace-Free Einstein Equations are indeed viable
for cosmological and astrophysical applications.Comment: Substantial changes from v1 including added author, change of title
and emphasis of the paper although all original results of v1. remai
Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation
It is shown that the energy of a mode of a classical chaotic field, following
the continuous exponential distribution as a classical random variable, can be
uniquely decomposed into a sum of its fractional part and of its integer part.
The integer part is a discrete random variable (we call it Planck variable)
whose distribution is just the Bose distribution yielding the Planck law of
black-body radiation. The fractional part is the dark part (we call is dark
variable) with a continuous distribution, which is, of course, not observed in
the experiments. It is proved that the Bose distribution is infinitely
divisible, and the irreducible decomposition of it is given. The Planck
variable can be decomposed into an infinite sum of independent binary random
variables representing the binary photons (more accurately photo-molecules or
photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons
follow the Fermi statistics. Consequently, the black-body radiation can be
viewed as a mixture of statistically and thermodynamically independent fermion
gases consisting of binary photons. The binary photons give a natural tool for
the dyadic expansion of arbitrary (but not coherent) ordinary photon
excitations. It is shown that the binary photons have wave-particle
fluctuations of fermions. These fluctuations combine to give the wave-particle
fluctuations of the original bosonic photons expressed by the Einstein
fluctuation formula.Comment: 29 page
New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory
There is a unique Lorentz-violating modification of the Maxwell theory of
photons, which maintains gauge invariance, CPT, and renormalizability.
Restricting the modified-Maxwell theory to the isotropic sector and adding a
standard spin-one-half Dirac particle p^\pm with minimal coupling to the
nonstandard photon \widetilde{\gamma}, the resulting
modified-quantum-electrodynamics model involves a single dimensionless
"deformation parameter," \widetilde{\kappa}_{tr}. The exact tree-level decay
rates for two processes have been calculated: vacuum Cherenkov radiation p^\pm
\to p^\pm \widetilde{\gamma} for the case of positive \widetilde{\kappa}_{tr}
and photon decay \widetilde{\gamma} \to p^+ p^- for the case of negative
\widetilde{\kappa}_{tr}. From the inferred absence of these decays for a
particular high-quality ultrahigh-energy-cosmic-ray event detected at the
Pierre Auger Observatory and an excess of TeV gamma-ray events observed by the
High Energy Stereoscopic System telescopes, a two-sided bound on
\widetilde{\kappa}_{tr} is obtained, which improves by eight orders of
magnitude upon the best direct laboratory bound. The implications of this
result are briefly discussed.Comment: 18 pages, v5: published version in preprint styl
Entanglement between an electron and a nuclear spin 1/2
We report on the preparation and detection of entangled states between an
electron spin 1/2 and a nuclear spin 1/2 in a molecular single crystal. These
were created by applying pulses at ESR (9.5 GHz) and NMR (28 MHz) frequencies.
Entanglement was detected by using a special entanglement detector sequence
based on a unitary back transformation including phase rotation.Comment: 4 pages, 3 figure
Quantum Mechanical Carrier of the Imprints of Gravitation
We exhibit a purely quantum mechanical carrier of the imprints of gravitation
by identifying for a relativistic system a property which (i) is independent of
its mass and (ii) expresses the Poincare invariance of spacetime in the absence
of gravitation. This carrier consists of the phase and amplitude correlations
of waves in oppositely accelerating frames. These correlations are expressed as
a Klein-Gordon-equation-determined vector field whose components are the
``Planckian power'' and the ``r.m.s. thermal fluctuation'' spectra. The
imprints themselves are deviations away from this vector field.Comment: 8 pages, RevTex. Html version of this and related papers on
accelerated frames available at http://www.math.ohio-state.edu/~gerlac
Post-Newtonian Approximation in Maxwell-Like Form
The equations of the linearized first post-Newtonian approximation to general
relativity are often written in "gravitoelectromagnetic" Maxwell-like form,
since that facilitates physical intuition. Damour, Soffel and Xu (DSX) (as a
side issue in their complex but elegant papers on relativistic celestial
mechanics) have expressed the first post-Newtonian approximation, including all
nonlinearities, in Maxwell-like form. This paper summarizes that DSX
Maxwell-like formalism (which is not easily extracted from their celestial
mechanics papers), and then extends it to include the post-Newtonian
(Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e.
gravitational stress tensor) and law of momentum conservation in Maxwell-like
form. The authors and their colleagues have found these Maxwell-like momentum
tools useful for developing physical intuition into numerical-relativity
simulations of compact binaries with spin.Comment: v4: Revised for resubmission to Phys Rev D, 6 pages. v3: Reformulated
in terms of DSX papers. Submitted to Phys Rev D, 6 pages. v2: Added
references. Changed definitions & convention
- âŠ