3 research outputs found

    Mid-infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 ā€“ W2 ā‰„ 0.8 (i.e., [3.4]ā€“[4.6] ā‰„0.8, Vega), which identifies 61.9 Ā± 5.4 active galactic nucleus (AGN) candidates per deg^2 to a depth of W2 ~ 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 Ī¼Jy at 4.6 Ī¼m, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field

    WISE Discovery of Hyper Luminous Galaxies at z = 2-4 and Their Implications for Galaxy and AGN Evolution

    Get PDF
    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at z=2-4, and with IR luminosity > 10^(13)L_ā˜‰, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies

    WISE J233237.05ā€“505643.5: A Double-peaked, Broad-lined Active Galactic Nucleus with a Spiral-shaped Radio Morphology

    Get PDF
    We present radio continuum mapping, optical imaging, and spectroscopy of the newly discovered double-peaked, broad-lined active galactic nucleus (AGN) WISE J233237.05ā€“505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid morphology, characterized by a bright core, jet, and Doppler-boosted lobe structures in Australian Telescope Compact Array continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332ā€“5056 is hosted by a disk-like galaxy. The core has a projected 5'' linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch, optical-near-IR photometric measurements indicate significant variability over a 3-20 yr baseline from the AGN component. Gemini South optical data show unusual double-peaked emission-line features: the centroids of the broad-lined components of HĪ± and HĪ² are blueshifted with respect to the narrow lines and host galaxy by ~3800 km s^(ā€“1). We examine possible cases that involve single or double supermassive black holes in the system and discuss the required future investigations to disentangle the mysterious nature of this system
    corecore