27 research outputs found

    DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers

    Get PDF
    Identification of early changes in Dopamine-Transporter (DaT) SPECT imaging expected in the prodromal phase of Parkinson’s disease (PD), are usually overlooked. Carriers of the G2019S LRRK2 mutation are known to be at high risk for developing PD, compared to non-carriers. In this work we aimed to study early changes in Dopamine uptake in non-manifesting PD carriers (NMC) of the G2019S LRRK2 mutation using quantitative DaT-SPECT analysis and to examine the potential for early prediction of PD. Eighty Ashkenazi-Jewish subjects were included in this study: eighteen patients with PD; thirty-one NMC and thirty-one non-manifesting non-carriers (NMNC). All subjects underwent a through clinical assessment including evaluation of motor, olfactory, affective and non-motor symptoms and DaT-SPECT imaging. A population based DaT-SPECT template was created based on the NMNC cohort, and data driven volumes-of-interest (VOIs) were defined. Comparisons between groups were performed based on VOIs and voxel-wise analysis. The striatum area of all three cohorts was segmented into four VOIs, corresponding to the right/left dorsal and ventral striatum. Significant differences in clinical measures were found between patients with PD and non-manifesting subjects with no differences between NMC and NMNC. Significantly lower uptake (p<0.001) was detected in the right and left dorsal striatum in the PD group (2.2±0.3, 2.3±0.4) compared to the NMC (4.2±0.6, 4.3±0.5) and NMNC (4.5±0.6, 4.6±0.6), and significantly (p = 0.05) lower uptake in the right dorsal striatum in the NMC group compared to NMNC. Converging results were obtained using voxel-wise analysis. Two NMC participants, who later phenoconverted into PD, demonstrated reduced uptake mainly in the dorsal striatum. No significant correlations were found between the DaT-SPECT uptake in the different VOIs and clinical and behavioral assessments in the non-manifesting groups. This study shows the clinical value of quantitative assessment of DaT-SPECT imaging and the potential for predicting PD by detection of dopamine depletion, already at the pre-symptomatic stage

    The Role and Limitations of 18-Fluoro-2-deoxy-d-glucose Positron Emission Tomography (FDG-PET) Scan and Computerized Tomography (CT) in Restaging Patients with Hepatic Colorectal Metastases Following Neoadjuvant Chemotherapy: Comparison with Operative and Pathological Findings

    Get PDF
    BACKGROUND: Recent data confirmed the importance of 18-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in the selection of patients with colorectal hepatic metastases for surgery. Neoadjuvant chemotherapy before hepatic resection in selected cases may improve outcome. The influence of chemotherapy on the sensitivity of FDG-PET and CT in detecting liver metastases is not known. METHODS: Patients were assigned to either neoadjuvant treatment or immediate hepatic resection according to resectability, risk of recurrence, extrahepatic disease, and patient preference. Two-thirds of them underwent FDG-PET/CT before chemotherapy; all underwent preoperative contrast-enhanced CT and FDG-PET/CT. Those without extensive extrahepatic disease underwent open exploration and resection of all the metastases according to original imaging findings. Operative and pathological findings were compared to imaging results. RESULTS: Twenty-seven patients (33 lesions) underwent immediate hepatic resection (group 1), and 48 patients (122 lesions) received preoperative neoadjuvant chemotherapy (group 2). Sensitivity of FDG-PET and CT in detecting colorectal (CR) metastases was significantly higher in group 1 than in group 2 (FDG-PET: 93.3 vs 49%, P < 0.0001; CT: 87.5 vs 65.3, P = 0.038). CT had a higher sensitivity than FDG-PET in detecting CR metastases following neoadjuvant therapy (65.3 vs 49%, P < 0.0001). Sensitivity of FDG-PET, but not of CT, was lower in group 2 patients whose chemotherapy included bevacizumab compared to patients who did not receive bevacizumab (39 vs 59%, P = 0.068). CONCLUSIONS: FDG-PET/CT sensitivity is lowered by neoadjuvant chemotherapy. CT is more sensitive than FDG-PET in detecting CR metastases following neoadjuvant therapy. Surgical decision-making requires information from multiple imaging modalities and pretreatment findings. Baseline FDG-PET and CT before neoadjuvant therapy are mandatory

    Hypermetabolic lymphadenopathy following administration of BNT162b2 mRNA Covid-19 vaccine: incidence assessed by [18F]FDG PET-CT and relevance to study interpretation

    No full text
    PURPOSE: Nationwide mass vaccination against Covid-19 started in Israel in late 2020. Soon we identified on [18F]FDG PET-CT studies vaccine-associated hypermetabolic lymphadenopathy (VAHL) in axillary or supraclavicular lymph nodes (ASLN) ipsilateral to the vaccination site. Sometimes, differentiation between the malignant and benign nature of the hypermetabolic lymphadenopathy (HLN) could not be made, and equivocal HLN (EqHL) was reported. The purpose of the study was to determine the overall incidence of VAHL after BNT162b2 vaccination and also its relevance to PET-CT interpretation in oncologic patients. METHODS: A total of 951 consecutive patients that underwent [18F]FDG PET-CT studies in our department were interviewed regarding the sites and dates of the vaccine doses. A total of 728 vaccinated patients (All-Vac group) were included: 346 received the first dose only (Vac-1 group) and 382 received the booster dose as well (Vac-2 group). Studies were categorized as no HLN, malignant-HLN (MHL), VAHL, or EqHL. In studies with VAHL, location, [18F]FDG-intensity uptake and nodes size were recorded. RESULTS: The incidences of HLN were 45.6%, 36.4%, and 53.9% in All-Vac, Vac-1, and Vac-2 groups, respectively. VAHL was reported in 80.1% of vaccinated patients with HLN. Lower incidences of VAHL were found during the first 5 days or in the third week after the first vaccine and beyond 20 days after the booster dose. In 49 of 332 (14.8%) vaccinated patients, we could not determine whether HLN was MHL or VAHL. Breast cancer and lymphoma were the leading diseases with EqHL. CONCLUSION: VAHL is frequently observed after BNT162b2 administration, more commonly and with higher intensity following the booster dose. To minimize false and equivocal reports in oncological patients, timing of [18F]FDG PET-CT should be based on the time intervals found to have a lower incidence of VAHL, and choice of vaccine injection site should be advised, mainly in patients where ASLN are a relevant site of tumor involvement

    68Ga-PSMA-11 PET/CT Follow-Up of Patients with Prostate Cancer with Bone Metastases Who Had Reduced Bone Density after Androgen Deprivation Therapy

    No full text
    Bone metastases from prostate cancer (PCa) often show an increase in density on computed tomography (CT) after successful androgen deprivation therapy (ADT). Density may be reduced, however, as the disease progresses or, contrarily, when disease is no longer active. The current study investigated the role of 68Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) in differentiating between these two conditions. Methods: The study cohort included 15 PCa patients with sclerotic/blastic bone metastasis in whom reduction in bone density of metastasis was noted on follow-up 68Ga-PSMA-11 PET/CT after ADT. Each patient had two PET/CT scans. Prior to the first scan, six patients were castration naïve and nine patients were already treated. All patients had ADT between the two PET/CT scans. PET parameters (SUVmax and tumor-to-background ratio), and CT parameters (HUmax) were determined and compared for each lesion on both scans. Patient’s response was based on prostate-specific antigen (PSA) levels and appearance of new lesions. The Kolmogorov–Smirnov test was used to evaluate normal distribution of the continuous variables. Results: Post-ADT reduction in bone density was identified in 37 lesions. The mean HUmax was 883.9 ± 175.1 on the first scan and 395.6 ± 157.1 on the second scan (p &lt; 0.001). Twenty-one of the 37 lesions showed no increased tracer uptake on the second PET/CT scan raising the likelihood of a response. The other 16 lesions were associated with increased uptake suggestive of an active resistant disease. Bone density was not different in lesions that no longer showed an increased uptake as compared with those that did. Seven of the study patients responded to therapy, and none of the 16 lesions found in these patients showed increased 68Ga-PSMA-11 uptake. In eight patients with progressive disease, all 12 lesions in five of them showed increased 68Ga-PSMA-11 uptake, there was mixed response in two patients (having two lesions with increased uptake and one without) and although all three lesions no longer showed an increased uptake, new lesions were detected in the eighth patient. Conclusion: A decrease in density of bone lesions may reflect clinical progression, or contrarily, a response to therapy in patients with PCa and skeletal involvement treated with ADT. Uptake of 68Ga-PSMA-11 may separate between these two vastly opposing conditions

    Personalized radiation dosimetry for PRRT : how many scans are really required?

    No full text
    Purpose Over recent years, peptide receptor radiotherapy (PRRT) has been recognized as an effective treatment for patients with metastatic neuroendocrine tumors (NETs). Personalized dosimetry can contribute to improve the outcome of peptide receptor radiotherapy (PRRT) in patients with metastatic NETs. Dosimetry can aid treatment planning, ensuring that absorbed dose to vulnerable normal organs (kidneys and bone marrow) does not exceed safe limits over serial treatments, and that absorbed dose to tumor is sufficient. Absorbed dose is estimated from a series of post-treatment SPECT/CT images. Total self-dose is proportional to the integral under the time activity concentration curve (TACC). Method dependence of image-based absorbed dose calculations has been previously investigated, and we set out here to extend previous work by examining implications of number of data points in the TACC and the numerical integration methods used in estimating absorbed dose. Methods In this retrospective study, absorbed dose estimates and effective half-lives were calculated by fitting curves to TACCs for normal organs and tumors in 30 consecutive patients who underwent a series of 4 post-treatment SPECT/CT scans at 4 h, 24 h, 4–5 days, and 1 week following 177Lu-DOTATATE PRRT. We examined the effects of including only 2 or 3 rather than all 4 data points in the TACC, and the effect of numerical integration method (mono-exponential alone or in combination with trapezoidal rule) on the absorbed dose and half-life estimates. Our current method is the combination of trapezoidal rule over the first 24 h, with mono-exponential fit thereafter extrapolated to infinity. The other methods were compared to this current method. Results Differences in absorbed dose and effective half-life between the current method and estimates based only on the second, third, and fourth scans were very small (mean differences &lt; 2.5%), whereas differences between the current method and 4-point mono-exponential fit were higher (mean differences &lt; 5%) with a larger range. It appears that in a 4-point mono-exponential fit the early (4 h) time point may skew results, causing some large errors. Differences between the current method and values based on only 2 time points were relatively small (mean differences &lt; 3.5%) when the 24 h and 1 week scans were used, but when the 24 h and 4–5 days scans, or the 4–5 days and 1 week scans were used, differences were greater. Conclusion This study indicates that for 177Lu-DOTATATE PRRT, accurate estimates of absorbed dose for organs and tumors may be estimated from scans at 24 h, 72 h, and 1 week post-treatment without an earlier scan. It may even be possible to cut out the 72 h scan, though the uncertainty increases. However, further work on more patients is required to validate this

    Is There a Role for [<sup>18</sup>F]FDG PET-CT in Staging MALT Lymphoma?

    No full text
    The role of 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography—computed tomography (PET-CT) in assessing mucosa-associated lymphoid tissue (MALT) lymphoma is debatable. We retrospectively explored the role of [18F]FDG PET-CT in staging and predicting progression-free-survival (PFS) of patients with newly-diagnosed MALT lymphoma. Sixty-six studies were included. The maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were documented in the “hottest” extranodal and nodal lesions. Extranodal lesions and accompanying nodal disease were detected on PET in 38/66 (57.6%) and 13/66 (19.7%) studies, respectively. Detection rate of extranodal lesions differed significantly between those located in tissues with high/heterogeneous (e.g., stomach) vs low/homogenous (e.g., subcutaneous-tissue, lung) physiologic [18F]FDG-uptake (40.4% vs. 100%, p 18F]FDG-avidity of extranodal lesions were higher in patients with advanced, bulky disease and concomitant marrow/nodal involvement. Increased SUVmax of extranodal lesions predicted shorter PFS (HR 1.10, 95% CI 1.01–1.19, p = 0.02). Higher SUVmax and TLG showed trends towards shorter PFS in patients with localized disease. In conclusion, detection rate of extranodal MALT lymphoma lesions located in tissues with low/homogeneous physiologic [18F]FDG-uptake is excellent on [18F]FDG PET-CT. When detected, SUVmax of extranodal lesions may predict PFS

    The Clinical Impact of Camera-Based Positron Emission Tomography Imaging in Patients With Recurrent Colorectal Cancer

    No full text
    Rationale and Objectives: F18-fluorodeoxyglucose (FDG)-positron emission tomography (PET) studies have clinical value in suspected recurrent or metastatic colorectal cancer cases. Because this modality is not accessible for many patients, a camera-based FDG (CB-FDG) coincidence imaging was suggested as an alternative. Although inferior in resolution to a dedicated PET system, it can make FDG studies available to more patients. We assessed the clinical value of CB-FDG in patients with recurrent colorectal cancer. Methods: The disease stage and treatment approach in 83 patients were twice determined by an oncologist and a surgeon, first based on the patient&apos;s records and blind to CB-FDG findings and then with the inclusion of FDG results in the decision-making analysis. Results: On a lesion-based analysis, the sensitivity of CB-FDG was 95% and the specificity was 81% compared with 88% and 64%, respectively, for computed tomography. Adding FDG findings led to disease-stage alteration in 47 patients (57%), upstaging in 35 (42%), and downstaging in 12 (15%). FDG localized the tumor sites in 21 of 26 patients (81%) with suspected clinical recurrence and a negative conventional imaging workup. In 8 patients, FDG ruled out viable tumor tissue suggested by other modalities. The oncologist&apos;s suggested treatment approach was altered in 54% of the patients and the surgeon altered the decision on operability in 28%. Conclusion: CB-FDG assessment has clinical value for both staging and selecting treatment in patients with recurrent colorectal cancer and can be considered an alternative to an nonaccessible dedicated PET system
    corecore