309 research outputs found

    Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols

    Get PDF
    We present analyses of stable isotopic ratios ^(17)O/^(16)O, ^(18)O/^(16)O, ^(34)S/^(32)S, and ^(33)S/^(32)S, ^(36)S/^(32)S in sulfate leached from volcanic ash of a series of well known, large and small volcanic eruptions. We consider eruptions of Mt. St. Helens (Washington, 1980, ∼1 km^3), Mt. Spurr (Alaska, 1953, <1 km3), Gjalp (Iceland, 1996, 1998, <1 km^3), Pinatubo (Phillipines, 1991, 10 km^3), Bishop tuff (Long Valley, California, 0.76 Ma, 750 km^3), Lower Bandelier tuff (Toledo Caldera, New Mexico, 1.61 Ma, 600 km^3), and Lava Creek and Huckleberry Ridge tuffs (Yellowstone, Wyoming, 0.64 Ma, 1000 km^3 and 2.04 Ma 2500 km^3, respectively). This list covers much of the diversity of sizes and the character of silicic volcanic eruptions. Particular emphasis is paid to the Lava Creek tuff for which we present wide geographic sample coverage. This global dataset spans a significant range in δ^(34)S, δ^(18)O, and Δ^(17)O of sulfate (29‰, 30‰, and 3.3‰, respectively) with oxygen isotopes recording mass-independent (Δ^(17)O > 0.2‰) and sulfur isotopes exhibiting mass-dependent behavior. Products of large eruptions account for most of‘ these isotopic ranges. Sulfate with Δ^(17)O > 0.2‰ is present as 1–10 μm gypsum crystals on distal ash particles and records the isotopic signature of stratospheric photochemical reactions. Sediments that embed ash layers do not contain sulfate or contain little sulfate with Δ^(17)O near 0‰, suggesting that the observed sulfate in ash is of volcanic origin. Mass-dependent fractionation of sulfur isotopic ratios suggests that sulfate-forming reactions did not involve photolysis of SO2, like that inferred for pre-2.3 Ga sulfates from Archean sediments or Antarctic ice-core sulfate associated with few dated eruptions. Even though the sulfate sulfur isotopic compositions reflect mass-dependent processes, the products of caldera-forming eruptions display a large δ^(34)S range and exhibit fractionation relationships that do not follow the expected equilibrium slopes of 0.515 and 1.90 for ^(33)S/^(32)S vs. ^(34)S/^(32)S and ^(36)S/^(32)S vs. ^(34)S/^(32)S, respectively. The data presented here are consistent with modification of a chemical mass-dependent fractionation of sulfur isotopes in the volcanic plume by either a kinetic gas phase reaction of volcanic SO_2 with OH and/or a Rayleigh processes involving a residual Rayleigh reactant—volcanic SO_2 gas, rather than a Rayleigh product. These results may also imply at least two removal pathways for SO_2 in volcanic plumes. Above-zero Δ^(17)O values and their positive correlation with δ^(18)O in sulfate can be explained by oxidation by high-δ^(18)O and high-Δ^(17)O compounds such as ozone and radicals such as OH that result from ozone break down. Large caldera-forming eruptions have the highest Δ^(17)O values, and the largest range of δ^(18)O, which can be explained by stratospheric reaction with ozone-derived OH radicals. These results suggest that massive eruptions are capable of causing a temporary depletion of the ozone layer. Such depletion may be many times that of the measured 3–8% depletion following 1991 Pinatubo eruption, if the amount of sulfur dioxide released scales with the amount of ozone depletion

    Intracrystalline site preference of oxygen isotopes in goethite: A single-mineral paleothermometer

    Get PDF
    The crystal structure of goethite, FeO(OH), has two distinct oxygen sites, one with exclusively Fe-O bonds, the other with bonds to both iron and hydrogen. We developed a method to assess the oxygen isotope contrast between these sites by measuring both the bulk goethite and the oxygen released in the conversion of goethite to hematite. The method involves collecting the water released by dehydroxylation, fluorinating that population of extracted atoms, and measuring the resulting oxygen isotope composition (extracted δO¹⁸). Then, on a separate aliquot, all structural oxygen is fluorinated and measured (bulk δO¹⁸). Using synthetic goethite precipitates grown under controlled environmental conditions, we found significant temperature-dependent fractionation, ε_(bulk-extracted)=(5.51±0.26)×(10⁶/T²)−(44.5±2.8); T in Kelvin). This intracrystalline fractionation forms the basis of a single-phase paleothermometer with an estimated uncertainty of ∼2-3°C. The temperature dependence appears to be independent of the isotopic composition of the parent fluid from which the goethite formed and the pH of that fluid. This intracrystalline thermometer can be used to simultaneously determine the formation temperature of a goethite and the isotopic composition of the water from which it formed. Natural goethites analyzed with this technique yield geologically reasonable formation temperatures of between 15 and 41°C

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    Non-linear effects and dephasing in disordered electron systems

    Full text link
    The calculation of the dephasing time in electron systems is presented. By means of the Keldysh formalism we discuss in a unifying way both weak localization and interaction effects in disordered systems. This allows us to show how dephasing arises both in the particle-particle channel (weak localization) and in the particle-hole channel (interaction effect). First we discuss dephasing by an external field. Besides reviewing previous work on how an external oscillating field suppresses the weak localization correction, we derive a new expression for the effect of a field on the interaction correction. We find that the latter may be suppressed by a static electric field, in contrast to weak localization. We then consider dephasing due to inelastic scattering. The ambiguities involved in the definition of the dephasing time are clarified by directly comparing the diagrammatic approach with the path-integral approach. We show that different dephasing times appear in the particle-particle and particle-hole channels. Finally we comment on recent experiments.Comment: 28 pages, 6 figures (14ps-files

    Dephasing in Disordered Conductors due to Fluctuating Electric Fields

    Full text link
    We develop a novel eikonal expansion for the Cooperon to study the effect of space- and time-dependent electric fields on the dephasing rate of disordered conductors. For randomly fluctuating fields with arbitrary covariance we derive a general expression for the dephasing rate which is free of infrared divergencies in reduced dimensions. For time-dependent external fields with finite wavelength and sufficiently small amplitude we show that the dephasing rate is proportional to the square root of the electromagnetic power coupled into the system, in agreement with data by Wang and Lindelof [Phys. Rev. Lett. {\bf{59}}, 1156 (1987)].Comment: 17 Latex-pages, one figure; we now give more technical details and discuss the screening problem more carefully; to appear in Phys. Rev.

    Solubility of water in lunar basalt at low pH_2O

    Get PDF
    We report the solubility of water in Apollo 15 basaltic ‘Yellow Glass’ and an iron-free basaltic analog composition at 1 atm and 1350 °C. We equilibrated melts in a 1-atm furnace with flowing H_2/CO_2 gas mixtures that spanned ∼8 orders of magnitude in fO_2 (from three orders of magnitude more reducing than the iron-wüstite buffer, IW−3.0, to IW+4.8) and ∼4 orders of magnitude in pH_2/pH_2O (from 0.003 to 24). Based on Fourier transform infrared spectroscopy (FTIR), our quenched experimental glasses contain 69–425 ppm total water (by weight). Our results demonstrate that under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH_2O in the furnace atmosphere and is independent of fO_2 and pH_2/pH_2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H_2 in our iron-free experiments is ∼200 ppm C would be required for the vapor composition to be dominated by CO rather than H_2 at 65–75% vesicularity

    Classification of the nucleolytic ribozymes based upon catalytic mechanism

    Get PDF
    The nucleolytic ribozymes carry out site-specific RNA cleavage reactions by nucleophilic attack of the 2’-oxygen atom on the adjacent phosphorus with an acceleration of a million-fold or greater. A major part of this arises from concerted general acid-base catalysis. Recent identification of new ribozymes has expanded the group to a total of nine and this provides a new opportunity to identify sub-groupings according to the nature of the general base and acid. These include nucleobases, hydrated metal ions, and 2’-hydroxyl groups. Evolution has selected a number of different combinations of these elements that lead to efficient catalysis. These differences provide a new mechanistic basis for classifying these ribozymes
    corecore