5 research outputs found

    Comparison of subthalamic unilateral and bilateral theta burst deep brain stimulation in Parkinson’s disease

    Get PDF
    High-frequency, conventional deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson’s disease (PD) is usually applied bilaterally under the assumption of additive effects due to interhemispheric crosstalk. Theta burst stimulation (TBS-DBS) represents a new patterned stimulation mode with 5 Hz interburst and 200 Hz intraburst frequency, whose stimulation effects in a bilateral mode compared to unilateral are unknown. This single-center study evaluated acute motor effects of the most affected, contralateral body side in 17 PD patients with unilateral subthalamic TBS-DBS and 11 PD patients with bilateral TBS-DBS. Compared to therapy absence, both unilateral and bilateral TBS-DBS significantly improved (p < 0.05) lateralized Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III) scores. Bilateral TBS-DBS revealed only slight, but not significant additional effects in comparison to unilateral TBS-DBS on total lateralized motor scores, but on the subitem lower limb rigidity. These results indicate that bilateral TBS-DBS has limited additive beneficial effects compared to unilateral TBS-DBS in the short term

    Danger signals in stroke and their role on microglia activation after ischemia

    No full text
    Ischemic stroke is a major cause of death. Besides the direct damage resulting from oxygen and glucose deprivation, sterile inflammation plays a pivotal role in increasing cellular death. Damaged-associated molecular patterns (DAMPs) are passively released from dying cells and activate the innate immune system. Thus, they take part in the direct and rapid activation of the inflammatory response after stroke onset. In this review the role of the most important DAMPs, high mobility group box 1, heat and cold shock proteins, purines, and peroxiredoxins, are addressed. Moreover, intracellular pathways activated by DAMPs in microglia are illuminated

    CLOVER-DBS: Algorithm-Guided Deep Brain Stimulation-Programming Based on External Sensor Feedback Evaluated in a Prospective, Randomized, Crossover, Double-Blind, Two-Center Study

    Get PDF
    BACKGROUND Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline and facilitate programming could leverage these innovations. OBJECTIVE We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-blind study in two German DBS centers. METHODS For 23 Parkinson's disease patients with clinically effective DBS, new algorithm-guided DBS-settings were determined and compared to previously established standard-of-care DBS-settings using UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. Six different versions of the algorithm were evaluated during the study and 10 subjects programmed with uniform algorithm-version were analyzed as a subgroup. RESULTS Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared to off-stimulation-state. UPDRS-III scores were reduced significantly more with standard-of-care settings as compared to algorithm-guided programming with heterogenous algorithm versions in the entire cohort. A subgroup with the latest algorithm version showed no significant differences in UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were farther away from a literature-based optimal stimulation target. CONCLUSION Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable less trained health-professionals to achieve satisfactory DBS-programming results, or potentially reduce time needed for programming. Larger studies and further improvements of algorithm-guided programming are needed to confirm these results

    Neurological symptoms and complications in predominantly hospitalized COVID‐19 patients: Results of the European multinational Lean European Open Survey on SARS‐Infected Patients (LEOSS)

    Get PDF
    Background and purposeDuring acute coronavirus disease 2019 (COVID-19) infection, neurological signs, symptoms and complications occur. We aimed to assess their clinical relevance by evaluating real-world data from a multinational registry.MethodsWe analyzed COVID-19 patients from 127 centers, diagnosed between January 2020 and February 2021, and registered in the European multinational LEOSS (Lean European Open Survey on SARS-Infected Patients) registry. The effects of prior neurological diseases and the effect of neurological symptoms on outcome were studied using multivariate logistic regression.ResultsA total of 6537 COVID-19 patients (97.7% PCR-confirmed) were analyzed, of whom 92.1% were hospitalized and 14.7% died. Commonly, excessive tiredness (28.0%), headache (18.5%), nausea/emesis (16.6%), muscular weakness (17.0%), impaired sense of smell (9.0%) and taste (12.8%), and delirium (6.7%) were reported. In patients with a complicated or critical disease course (53%) the most frequent neurological complications were ischemic stroke (1.0%) and intracerebral bleeding (ICB; 2.2%). ICB peaked in the critical disease phase (5%) and was associated with the administration of anticoagulation and extracorporeal membrane oxygenation (ECMO). Excessive tiredness (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.20–1.68) and prior neurodegenerative diseases (OR 1.32, 95% CI 1.07–1.63) were associated with an increased risk of an unfavorable outcome. Prior cerebrovascular and neuroimmunological diseases were not associated with an unfavorable short-term outcome of COVID-19.ConclusionOur data on mostly hospitalized COVID-19 patients show that excessive tiredness or prior neurodegenerative disease at first presentation increase the risk of an unfavorable short-term outcome. ICB in critical COVID-19 was associated with therapeutic interventions, such as anticoagulation and ECMO, and thus may be an indirect complication of a life-threatening systemic viral infection
    corecore