4 research outputs found

    Noninvasive Acquisition of the Aortic Blood Pressure Waveform

    Get PDF
    Blood pressure reflects the status of our cardiovascular system. For the measurement of blood pressure, we typically use brachial devices on the upper arm, and much less often, the radial devices with pressure sensors on the wrist. Medical doctors know that this is an unfortunate case. The brachial pressure and even more, the radial pressure, both are poor replacements for the central aortic pressure (CAP). Moreover, the devices on the market cannot provide continuous measurements 24 h. In addition, most of the ambulatory and wearable monitors do not enable acquisition of the blood pressure curves in time. These circumstances limit the accuracy of diagnosing. The aim of this chapter is to introduce our experiments, experiences and results in developing the wearable monitor for central aortic blood pressure curve by using electrical bioimpedance sensing and measurement. First, electronic circuitry with embedded data acquisition and signal processing approaches is given. Second, finding appropriate materials, configurations and placements of electrodes is of interest. Third, the results of modelling and simulations are discussed for obtaining the best sensitivity and stability of the measurement procedures. Finally, the discussion on the provided provisional experiments evaluates the obtained results. The conclusions are drawn together with the need for further development

    Chapter Noninvasive Acquisition of the Aortic Blood Pressure Waveform

    Get PDF
    Blood pressure reflects the status of our cardiovascular system. For the measurement of blood pressure, we typically use brachial devices on the upper arm, and much less often, the radial devices with pressure sensors on the wrist. Medical doctors know that this is an unfortunate case. The brachial pressure and even more, the radial pressure, both are poor replacements for the central aortic pressure (CAP). Moreover, the devices on the market cannot provide continuous measurements 24 h. In addition, most of the ambulatory and wearable monitors do not enable acquisition of the blood pressure curves in time. These circumstances limit the accuracy of diagnosing. The aim of this chapter is to introduce our experiments, experiences and results in developing the wearable monitor for central aortic blood pressure curve by using electrical bioimpedance sensing and measurement. First, electronic circuitry with embedded data acquisition and signal processing approaches is given. Second, finding appropriate materials, configurations and placements of electrodes is of interest. Third, the results of modelling and simulations are discussed for obtaining the best sensitivity and stability of the measurement procedures. Finally, the discussion on the provided provisional experiments evaluates the obtained results. The conclusions are drawn together with the need for further development

    Methods for Detection of Bioimpedance Variations in Resource Constrained Environments

    No full text
    Changes in a certain parameter are often a few magnitudes smaller than the base value of the parameter, specifying significant requirements for the dynamic range and noise levels of the measurement system. In case of electrical bioimpedance acquisition, the variations can be 1000 times smaller than the entire measured value. Synchronous or lock-in measurement of these variations is discussed in the current paper, and novel measurement solutions are presented. Proposed methods are simple and robust when compared to other applicable solutions. A common feature shared by all members of the group of the proposed solutions is differentiation. It is achieved by calculating the differences between synchronously acquired consecutive samples, with lock-in integration and analog differentiation. All these methods enable inherent separation of variations from the static component of the signal. The variable component of the bioimpedance can, thus, be acquired using the full available dynamic range of the apparatus for its detection. Additive disturbing signals and omnipresent wideband noise are considered and the method for their reduction is proposed
    corecore