8 research outputs found
Quantum Langevin theory of excess noise
In an earlier work [P. J. Bardroff and S. Stenholm], we have derived a fully
quantum mechanical description of excess noise in strongly damped lasers. This
theory is used here to derive the corresponding quantum Langevin equations.
Taking the semi-classical limit of these we are able to regain the starting
point of Siegman's treatment of excess noise [Phys. Rev. A 39, 1253 (1989)].
Our results essentially constitute a quantum derivation of his theory and allow
some generalizations.Comment: 9 pages, 0 figures, revte
Threshold characteristics and intensity fluctuations of lasers with excess quantum noise
Quantum optics and Quantum information - OU
Grating and interferometric devices in POF
To date, much of the development work associated with polymer optical fibre (POF) applications has been aimed at exploiting the potential of the technology to provide low cost solutions. Here we argue that, in the sensing area at least, POF offers a number of other, more relevant advantages. In this paper we describe work on a range of devices based on photoinscribed gratings and on fibre interferometers, which are designed to take advantage of the unique properties of POF
Quantum statistics of overlapping modes in open resonators
We study the quantum dynamics of optical fields in weakly confining
resonators with overlapping modes. Employing a recently developed quantization
scheme involving a discrete set of resonator modes and continua of external
modes we derive Langevin equations and a master equation for the resonator
modes. Langevin dynamics and the master equation are proved to be equivalent in
the Markovian limit. Our open-resonator dynamics may be used as a starting
point for a quantum theory of random lasers.Comment: 6 pages, corrected typo
Excess quantum noise due to nonorthogonal polarization modes
We show that the quantum-limited linewidth of a laser can be enhanced when the polarization eigenmodes of the laser resonator are nonorthogonal. For the theoretical description of this phenomenon we introduce a simple coupled two-mode model. Experimentally, we observed an enhancement of the quantum noise by a factor of 60 in a He-Xe gas laser
Observation of excess quantum noise in a geometrically stable laser
Quantum optics and Quantum information - OU