14 research outputs found

    Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery

    Get PDF
    Antibody-modified liposomes, immuno-liposomes, can selectively deliver encapsulated drug ‘cargos’ to cells via the interaction of cell surface proteins with antibodies. However, chemical modification of both the antibodies and phospholipids is required for the preparation of immuno-liposomes for each target protein using conventional methods, which is time-consuming. In the present study, we demonstrated that high-affinity protein A- (Protein A-R28: PAR28) displaying liposomes prepared by the post-insertion of PAR28-conjugated phospholipid through polyethylene glycol (PEG)-linkers (PAR28-PEG-lipo) can undergo rapid modification of antibodies on their surface, and the liposomes can be delivered to cells based on their modified antibodies. Anti-CD147 and anti-CD31 antibodies could be modified with PAR28-PEG-lipo within 1 h, and each liposome was specifically taken up by CD147- and CD31-positive cells, respectively. The cellular amounts of doxorubicin delivered by anti-CD147 antibody-modified PAR28-PEG-lipo were significantly higher than those of isotype control antibody-modified liposomes. PAR28-PEG-lipo can easily and rapidly undergo modification of various antibodies on their surface, which then makes them capable of selective drug delivery dependent on the antibodies

    Correction osteotomy for bilateral varus knee deformity caused by premature epiphyseal closure induced by hypervitaminosis A: a case report

    No full text
    BackgroundA vitamin A derivative, 13-cis-retinoic acid (isotretinoin), has been administered to treat several types of pediatric cancer and has improved survival rates in patients despite being known to induce premature epiphyseal closure. As the number of patients treated by 13-cis-retinoic acid increases, demands for salvage treatment after systemic retinoid therapy are emerging. However, few studies have described the surgical treatment of this disease.Case presentationWe report a case with bilateral varus knee deformity due to premature epiphyseal closure that occurred during treatment with isotretinoin for neuroblastoma. The patient was successfully treated with correction osteotomy using a Taylor spatial frame in the right knee joint and femoral closed wedge osteotomy using a locking plate in left knee joint. Histopathological examination of the growth plate showed polar irregularity of chondrocytes and decreased cartilage matrix without apoptosis. In contrast, arthroscopic findings showed an intact joint surface. No recurrence of varus deformity was evident on follow-up at 1year.ConclusionsTo the best of our knowledge, this represents the first report of correction osteotomy for varus knee deformity due to premature epiphyseal closure that occurred during treatment with isotretinoin

    A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes

    No full text
    Modification with antibodies is a useful strategy for the delivery of nanoparticles to target cells. However, the complexity of the required chemical modifications makes them time-consuming and low efficiency, and the orientation of the antibody is challenging to control. To develop a simple, fast, effective, and orientation-controllable technology, we employed staphylococcal protein A, which can bind to the Fc region of antibodies, as a tool for conjugating antibodies to nanoparticles. Specifically, we modified the C-domain dimer of protein A to contain a lysine cluster to create a molecule, DPACK, that would electrostatically bind to anionic liposomes. Using this protein, antibody-modified liposomes can be prepared in 35 minutes with two steps: (1) interaction of DPACK with liposomes and (2) interaction of an antibody with DPACK-modified liposomes. Binding efficiencies of DPACK with liposomes and IgG with DPACK-modified liposomes were 75% and 72-84%, respectively. Uptake of liposomes modified with anti-epidermal growth factor receptor (EGFR) antibodies via DPACK by EGFR-expressing cancer cells was significantly higher than that of unmodified liposomes, and the liposomes accumulated in tumors and colocalized with EGFR. This simple, fast, effective and orientation-controllable technology for preparing antibody-modified liposomes will be useful for active targeting drug delivery

    Negative Differential Resistance by Molecular Resonant Tunneling between Neutral Tribenzosubporphine Anchored to a Au(111) Surface and Tribenzosubporphine Cation Adsorbed on to a Tungsten Tip

    No full text
    Tribenzosubporphyrins are boron­(III)-chelated triangular bowl-shaped ring-contracted porphyrins that possess a 14π-aromatic circuit. Their flat molecular shapes and discrete molecular orbital diagrams make them ideal for observation by scanning tunneling microscopy (STM). Expanding their applications toward single molecule-based devices requires a fundamental knowledge of single molecular conductance between tribenzosubporphines and the STM metal tip. We utilized a tungsten (W) STM tip to investigate the electronic properties of B-(5-mercaptopentoxy)­tribenzosubporphine <b>1</b> at the single molecular level. B-(5-mercaptopentoxy)-tribenzosubporphine <b>1</b> was anchored to the Au(111) surface via reaction with 1-heptanethiol linkers that were preorganized as a self-assembled monolayer (C7S SAM) on the Au(111) substrate. This arrangement ensured that <b>1</b> was electronically decoupled from the metal surface. Differential conductance (d<i>I</i>/d<i>V</i> – <i>V</i>) measurements with the bare W tip exhibited a broad gap region of low conductance and three distinct responses at 2.4,–1.3, and −2.1 V. Bias-voltage-dependent STM imaging of <b>1</b> at 65 K displayed a triangle shape at −2.1 < <i>V</i> < −1.3 V and a circle shape at <i>V</i> < −2.1 V, reflecting its HOMO and HOMO–1, respectively. In addition, different conductance behaviors were reproducibly observed, which has been ascribed to the adsorption of a tribenzosubporphine-cation on the W tip. When using a W tip doped with preadsorbed tribenzosubporphine-cation, negative differential resistance (NDR) phenomena were clearly observed in a reproducible manner with a peak-to-valley ratio of 2.6, a value confirmed by spatial mapping conductance measurements. Collectively, the observed NDR phenomena have been attributed to effective molecular resonant tunneling between a neutral tribenzosubporphine anchored to the metal surface and a tribenzosubporphine cation adsorbed on a W tip
    corecore