55 research outputs found

    p53 変異型ヒト口腔がん細胞における高LET 放射線によるp53 非依存Akt 生存シグナルの抑制

    Get PDF
    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G(2)/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp53 bearing cancer cells.博士(医学)・甲第598号・平成25年3月15日Copyright © 2012 Elsevier Inc. All rights reserve

    Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking

    Get PDF
    Trafficking of water channel aquaporin-2 (AQP2) to the apical membrane and its vasopressin and protein kinase A (PKA)–dependent regulation in renal collecting ducts is critical for body water homeostasis. We previously identified an AQP2 binding protein complex including actin and tropomyosin-5b (TM5b). We show that dynamic interactions between AQP2 and the actin cytoskeleton are critical for initiating AQP2 apical targeting. Specific binding of AQP2 to G-actin in reconstituted liposomes is negatively regulated by PKA phosphorylation. Dual color fluorescence cross-correlation spectroscopy reveals local AQP2 interaction with G-actin in live epithelial cells at single-molecule resolution. Cyclic adenosine monophosphate signaling and AQP2 phosphorylation release AQP2 from G-actin. In turn, AQP2 phosphorylation increases its affinity to TM5b, resulting in reduction of TM5b bound to F-actin, subsequently inducing F-actin destabilization. RNA interference–mediated knockdown and overexpression of TM5b confirm its inhibitory role in apical trafficking of AQP2. These findings indicate a novel mechanism of channel protein trafficking, in which the channel protein itself critically regulates local actin reorganization to initiate its movement

    FANCD1/BRCA2 Plays Predominant Role in the Repair of DNA Damage Induced by ACNU or TMZ

    Get PDF
    Nimustine (ACNU) and temozolomide (TMZ) are DNA alkylating agents which are commonly used in chemotherapy for glioblastomas. ACNU is a DNA cross-linking agent and TMZ is a methylating agent. The therapeutic efficacy of these agents is limited by the development of resistance. In this work, the role of the Fanconi anemia (FA) repair pathway for DNA damage induced by ACNU or TMZ was examined. Cultured mouse embryonic fibroblasts were used: FANCA−/−, FANCC−/−, FANCA−/−C−/−, FANCD2−/− cells and their parental cells, and Chinese hamster ovary and lung fibroblast cells were used: FANCD1/BRCA2mt, FANCG−/− and their parental cells. Cell survival was examined after a 3 h ACNU or TMZ treatment by using colony formation assays. All FA repair pathways were involved in ACNU-induced DNA damage. However, FANCG and FANCD1/BRCA2 played notably important roles in the repair of TMZ-induced DNA damage. The most effective molecular target correlating with cellular sensitivity to both ACNU and TMZ was FANCD1/BRCA2. In addition, it was found that FANCD1/BRCA2 small interference RNA efficiently enhanced cellular sensitivity toward ACNU and TMZ in human glioblastoma A172 cells. These findings suggest that the down-regulation of FANCD1/BRCA2 might be an effective strategy to increase cellular chemo-sensitization towards ACNU and TMZ

    EFFECTIVE NEW CANCER THERAPIES WHICH ARE INDEPENDENT OF P53 GENE STATUS

    No full text
    The gene product of the tumor suppressor gene p53 is known to play an important role in cancer therapy. The p53 molecule induces cell-cycle arrest, apoptosis and DNA repair after cells are subjected to cancer therapies involving ionizing radiation, hyperthermia and anti-cancer drugs. Patients with cancers bearing mutated (m) p53 or deleted p53 gene often have a poorer prognosis than those with cancers bearing wild-type (wt) p53 gene. We reported that efficient cell lethality by ionizing radiation, hyperthermia and anti-cancer drugs was observed in wt p53 cells, but not in cells bearing mp53 or deleted p53 genes in human cultured cancer cells. This review summarizes the contribution of p53 in these cancer therapies and demonstrates the strategy for tailor-made therapies for cancer cells with a different p53 gene status. The application of potential new therapies, such as chemical chaperon therapy with glycerol and p53 C- terminal peptides could be effective even for mp53 bearing cancers. Some sensitizers such as small interference RNA and targeting inhibitors, and heavy ion beams could be effective regardless of p53 gene status. These new therapies would be expected to be high efficacy treatments regardless of p53 gene status

    Alterations of Cellular Physiology in Escherichia coli in Response to Oxidative Phosphorylation Impaired by Defective F(1)-ATPase

    Get PDF
    The physiological changes in an F(1)-ATPase-defective mutant of Escherichia coli W1485 growing in a glucose-limited chemostat included a decreased growth yield (60%) and increased specific rates of both glucose consumption (168%) and respiration (171%). Flux analysis revealed that the mutant showed approximately twice as much flow in glycolysis but only an 18% increase in the tricarboxylic acid (TCA) cycle, owing to the excretion of acetate, where most of the increased glycolytic flux was directed. Genetic and biochemical analyses of the mutant revealed the downregulation of many TCA cycle enzymes, including citrate synthase, and the upregulation of the pyruvate dehydrogenase complex in both transcription and enzyme activities. These changes seemed to contribute to acetate excretion in the mutant. No transcriptional changes were observed in the glycolytic enzymes, despite the enhanced glycolysis. The most significant alterations were found in the respiratory-chain components. The total activity of NADH dehydrogenases (NDHs) and terminal oxidases increased about twofold in the mutant, which accounted for its higher respiration rate. These changes arose primarily from the increased (3.7-fold) enzyme activity of NDH-2 and an increased amount of cytochrome bd in the mutant. Transcriptional upregulation appeared to be involved in these phenomena. As NDH-2 cannot generate an electrochemical gradient of protons and as cytochrome bd is inferior to cytochrome bo(3) in this ability, the mutant was able to recycle NADH at a higher rate than the parent and avoid generating an excess proton-motive force. We discuss the physiological benefits of the alterations in the mutant
    corecore