53 research outputs found

    In vivo evidence that truncated trkB.T1 participates in nociception

    Get PDF
    Brain-Derived Neurotrophic Factor (BDNF) is a central nervous system modulator of nociception. In animal models of chronic pain, BDNF exerts its effects on nociceptive processing by binding to the full-length receptor tropomyosin-related kinase B (trkB.FL) and transducing intracellular signaling to produce nocifensive behaviors. In addition to trkB.FL, the trkB locus also produces a widely-expressed alternatively-spliced truncated isoform, trkB.T1. TrkB.T1 binds BDNF with high affinity; however the unique 11 amino acid intracellular cytoplasmic tail lacks the kinase domain of trkB.FL. Recently, trkB.T1 was shown to be specifically up-regulated in a model of HIV-associated neuropathic pain, potentially implicating trkB.T1 as a modulator of nociception. Here, we report that trkB.T1 mRNA and protein is up-regulated in the spinal dorsal horn at times following antiretroviral drug treatment and hind paw inflammation in which nocifensive behaviors develop. While genetic depletion of trkB.T1 did not affect baseline mechanical and thermal thresholds, the absence of trkB.T1 resulted in significant attenuation of inflammation- and antiretroviral-induced nocifensive behaviors. Our results suggest that trkB.T1 up-regulation following antiretroviral treatment and tissue inflammation participates in the development and maintenance of nocifensive behavior and may represent a novel therapeutic target for pain treatment

    Modified Whole-Mount In situ Hybridization Protocol for the Detection of Transgene Expression in Electroporated Chick Embryos

    Get PDF
    hybridization. hybridization (WISH).Here we describe a modification to the WISH protocol that is essential to prevent DNA cross-hybridization and to specifically detect transgene mRNA transcripts in electroporated embryos. Our optimized WISH procedure can be applied not only to electroporated chick embryos but also to other embryos or adult tissues that have been transfected with large amounts of reporter- or expression construct DNA

    Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity

    Get PDF
    A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies

    Functional Characterization of Human Cancer-Derived TRKB Mutations

    Get PDF
    Cancer originates from cells that have acquired mutations in genes critical for controlling cell proliferation, survival and differentiation. Often, tumors continue to depend on these so-called driver mutations, providing the rationale for targeted anticancer therapies. To date, large-scale sequencing analyses have revealed hundreds of mutations in human tumors. However, without their functional validation it remains unclear which mutations correspond to driver, or rather bystander, mutations and, therefore, whether the mutated gene represents a target for therapeutic intervention. In human colorectal tumors, the neurotrophic receptor TRKB has been found mutated on two different sites in its kinase domain (TRKBT695I and TRKBD751N). Another site, in the extracellular part of TRKB, is mutated in a human lung adenocarcinoma cell line (TRKBL138F). Lastly, our own analysis has identified one additional TRKB point mutation proximal to the kinase domain (TRKBP507L) in a human melanoma cell line. The functional consequences of all these point mutations, however, have so far remained elusive. Previously, we have shown that TRKB is a potent suppressor of anoikis and that TRKB-expressing cells form highly invasive and metastatic tumors in nude mice. To assess the functional consequences of these four TRKB mutations, we determined their potential to suppress anoikis and to form tumors in nude mice. Unexpectedly, both colon cancer-derived mutants, TRKBT695I and TRKBD751N, displayed reduced activity compared to that of wild-type TRKB. Consistently, upon stimulation with the TRKB ligand BDNF, these mutants were impaired in activating TRKB and its downstream effectors AKT and ERK. The two mutants derived from human tumor cell lines (TRKBL138F and TRKBP507L) were functionally indistinguishable from wild-type TRKB in both in-vitro and in-vivo assays. In conclusion, we fail to detect any gain-of-function of four cancer-derived TRKB point mutations
    corecore