6 research outputs found

    Cross electromagnetic nanofluid flow examination with infinite shear rate viscosity and melting heat through Skan-Falkner wedge

    Get PDF
    This demonstration of study focalizes the melting transport and inclined magnetizing effect of cross fluid with infinite shear rate viscosity along the Skan-Falkner wedge. Transport of energy analysis is brought through the melting process and velocity distribution is numerically achieved under the influence of the inclined magnetic dipole effect. Moreover, this study brings out the numerical effect of the process of thermophoresis diffusion and Brownian motion. The infinite shear rate of viscosity model of cross fluid reveals the set of partial differential equations (PDEs). Similarity transformation of variables converts the PDEs system into nonlinear ordinary differential equations (ODEs). Furthermore, a numerical bvp4c process is imposed on these resultant ODEs for the pursuit of a numerical solution. From the debate, it is concluded that melting process cases boost the velocity of fluid and velocity ratio parameter. The augmentation of the minimum value of energy needed to activate or energize the molecules or atoms to activate the chemical reaction boosts the concentricity inclined magnetized flow, infinite shear rate viscosity, Brownian motion, 2-D cross fluid, melting process of energy, thermophoresis diffusion melting of energy.Campus Chiclay

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Rheology of Variable Viscosity-Based Mixed Convective Inclined Magnetized Cross Nanofluid with Varying Thermal Conductivity

    No full text
    Cross nanofluid possesses an extraordinary quality among the various fluidic models to explore the key characteristics of flowing fluid during very low and very high shear rates and its viscosity models depend upon shear rate. The current study establishes the numerical treatment regarding variable viscosity-based mixed convective inclined magnetized Cross nanofluid with varying thermal conductivities over the moving permeable surface. Along with variable thermal conductivities, we considered thermal radiation, thermophoresis, and the Brownian motion effect. An inclined magnetic field was launched for velocity scrutiny and the heat transfer fact was numerically seen by mixed convective conditions. Similarity variables were actioned on generated PDEs of the physical model and conversion was performed into ODEs. Numerical results showed that the frictional force and Nusselt quantity considerably influence the skinning heat transfer processes over the geometry of a moving permeable surface. Furthermore, less velocity was noticed for the greater suction parameter and the Brownian motion parameter corresponds to lower mass transport

    Solid-state nanopore sensors

    No full text
    Nanopore-based sensors have established themselves as a prominent tool for solution-based, single-molecule analysis of the key building blocks of life, including nucleic acids, proteins, glycans and a large pool of biomolecules that have an essential role in life and healthcare. The predominant molecular readout method is based on measuring the temporal fluctuations in the ionic current through the pore. Recent advances in materials science and surface chemistries have not only enabled more robust and sensitive devices but also facilitated alternative detection modalities based on field-effect transistors, quantum tunnelling and optical methods such as fluorescence and plasmonic sensing. In this Review, we discuss recent advances in nanopore fabrication and sensing strategies that endow nanopores not only with sensitivity but also with selectivity and high throughput, and highlight some of the challenges that still need to be addressed
    corecore