50 research outputs found
LPS-TLR4 Signaling to IRF-3/7 and NF-ÎşB Involves the Toll Adapters TRAM and TRIF
Toll–IL-1–resistance (TIR) domain–containing adaptor-inducing IFN-β (TRIF)–related adaptor molecule (TRAM) is the fourth TIR domain–containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-κB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN-α/β, regulated on activation, normal T cell expressed and secreted (RANTES), and γ interferon–inducible protein 10 (IP-10) expression independently of the adaptor protein myeloid differentiation factor 88 (MyD88). Dominant negative and siRNA studies performed here demonstrate that TRIF functions downstream of both the TLR3 (dsRNA) and TLR4 (LPS) signaling pathways, whereas the function of TRAM is restricted to the TLR4 pathway. TRAM interacts with TRIF, MyD88 adaptor–like protein (Mal)/TIRAP, and TLR4 but not with TLR3. These studies suggest that TRIF and TRAM both function in LPS-TLR4 signaling to regulate the MyD88-independent pathway during the innate immune response to LPS
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
The innate immune system senses nucleic acids by germline-encoded pattern recognition receptors. RNA is sensed by Toll-like receptor members TLR3, TLR7 and TLR8, or by the RNA helicases RIG-I (also known as DDX58) and MDA-5 (IFIH1). Little is known about sensors for cytoplasmic DNA that trigger antiviral and/or inflammatory responses. The best characterized of these responses involves activation of the TANK-binding kinase (TBK1)-interferon regulatory factor 3 (IRF3) signalling axis to trigger transcriptional induction of type I interferon genes. A second, less well-defined pathway leads to the activation of an 'inflammasome' that, via caspase-1, controls the catalytic cleavage of the pro-forms of the cytokines IL1beta and IL18 (refs 6, 7). Using mouse and human cells, here we identify the PYHIN (pyrin and HIN domain-containing protein) family member absent in melanoma 2 (AIM2) as a receptor for cytosolic DNA, which regulates caspase-1. The HIN200 domain of AIM2 binds to DNA, whereas the pyrin domain (but not that of the other PYHIN family members) associates with the adaptor molecule ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain) to activate both NF-kappaB and caspase-1. Knockdown of Aim2 abrogates caspase-1 activation in response to cytoplasmic double-stranded DNA and the double-stranded DNA vaccinia virus. Collectively, these observations identify AIM2 as a new receptor for cytoplasmic DNA, which forms an inflammasome with the ligand and ASC to activate caspase-1
SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation
A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases
The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is a component of the inflammatory process, and its aberrant activation is pathogenic in inherited disorders such as cryopyrin-associated periodic syndrome (CAPS) and complex diseases such as multiple sclerosis, type 2 diabetes, Alzheimer's disease and atherosclerosis. We describe the development of MCC950, a potent, selective, small-molecule inhibitor of NLRP3. MCC950 blocked canonical and noncanonical NLRP3 activation at nanomolar concentrations. MCC950 specifically inhibited activation of NLRP3 but not the AIM2, NLRC4 or NLRP1 inflammasomes. MCC950 reduced interleukin-1 beta (IL-1 beta) production in vivo and attenuated the severity of experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis. Furthermore, MCC950 treatment rescued neonatal lethality in a mouse model of CAPS and was active in ex vivo samples from individuals with Muckle-Wells syndrome. MCC950 is thus a potential therapeutic for NLRP3-associated syndromes, including autoinflammatory and autoimmune diseases, and a tool for further study of the NLRP3 inflammasome in human health and disease
Ein wirtschaftliches Ausgleichssystem fĂĽr regionale Regelenergie-Leistungen virtueller Biogas-Verbundkraftwerke
Der zukünftig steigende Bedarf an Bereitstellung von Regelenergie aus regenerativen Kraftwerken sowie sinkende EEG-Tarifstrukturen im Bereich Biogas führen zur Notwendigkeit einer Entwicklung alternativer Betriebs- und Vergütungsmodelle. Der vorliegende Beitrag skizziert ein wirtschaftliches Ausgleichssystem für virtuelle Biogas-Verbundkraftwerke. Es beschreibt, welche Kosten und Erlöse in virtuellen Biogas-Verbünden generiert werden, sofern diese teilautomatisiert und auf die regionale Netzstabilität fokussiert betrieben werden. Das wirtschaftliche Ausgleichssystem ist ein Teil des im Forschungsvorhaben VKV Netz zu entwickelnden Steuerungssystems für virtuelle Biogas-Verbundkraftwerke (http://vkvnetz.de)
Ein Steuerungssystem fĂĽr den netzorientierten Betrieb virtueller Biogas-Verbundkraftwerke
Der zunehmende Anteil erneuerbarer Energien an der Stromproduktion Deutschlands erfordert einen ebenso steigenden Anteil der erneuerbaren Energien an der Bereitstellung von Regelenergie zur Stabilisierung der Stromnetze. Durch die Möglichkeit der zeitlichen Entkopplung von Gas- und Stromproduktion ist insbesondere die Biogastechnologie für die Bereitstellung von Regelenergie geeignet. Der vorliegende Beitrag skizziert ein Steuerungssystem für virtuelle Biogas-Verbundkraftwerke, dessen Oberziel die Stabilisierung des Stromnetzes ist. Die Entwicklung des Systems erfolgt im Zuge des Forschungsprojekts VKV Netz und wird durch das Bundesministerium für Wirtschaft und Energie gefördert
Automatisierte Steuerung von virtuellen Biogas-KraftwerksverbĂĽnden fĂĽr den netzorientierten Betrieb
Das Steuerungssystem VKV Netz ermöglicht den auf die Erbringung regionaler Systemdienstleistungen ausgerichteten Betrieb virtueller Biogas-Kraftwerksverbünde. Damit leistet es sowohl einen Beitrag zum zukünftig gesteigerten Bedarf an Regelenergie durch regenerative Kraftwerke als es auch alternative, zukunftsfähige Erlöspotenziale für die zumeist landwirtschaftlichen bzw. landwirtschaftsnahen Biogas-Anlagenbetreiber abseits des EEG aufzeigt. Das Steuerungssystem wurde im Rahmen des BMWi-Verbundforschungsvorhabens VKV Netz (Förderkennzeichen 0325943A) durch die Hochschule Hannover, die SLT-Technologies GmbH & Co. KG sowie die Überlandwerk Leinetal GmbH in Kooperation mit assoziierten Biogasanlagen im Zeitraum 01.01.2016 bis 31.12.2018 entwickelt und pilotiert
Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition
TLR7 senses RNA in endosomal compartments. TLR7 expression and signaling have been demonstrated in plasmacytoid and myeloid dendritic cells, B cells, and T cells. The regulation of TLR7 signaling can play a crucial role in shaping the immune response to RNA viruses with different cellular tropisms, and in developing adjuvants capable of promoting balanced humoral and cell-mediated immunity. We used unique characteristics of two ssRNA viruses, dengue virus and influenza virus, to delineate factors that regulate viral RNA-human TLR7 signaling beyond recognition in endosomal compartments. Our data show that TLR7 recognition of enveloped RNA virus genomes is linked to virus fusion or uncoating from the endosome. The signaling threshold required to activate TLR7-type I IFN production is greater than that required to activate TLR7-NF-kappaB-IL-8 production. The higher order structure of viral RNA appears to be an important determinant of TLR7-signaling potency. A greater understanding of viral RNA-TLR7 activity relationships will promote rational approaches to interventional and vaccine strategies for important human viral pathogens
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
The innate immune system senses nucleic acids by germline-encoded pattern recognition receptors. RNA is sensed by Toll-like receptor members TLR3, TLR7 and TLR8, or by the RNA helicases RIG-I (also known as DDX58) and MDA-5 (IFIH1). Little is known about sensors for cytoplasmic DNA that trigger antiviral and/or inflammatory responses. The best characterized of these responses involves activation of the TANK-binding kinase (TBK1)-interferon regulatory factor 3 (IRF3) signalling axis to trigger transcriptional induction of type I interferon genes. A second, less well-defined pathway leads to the activation of an \u27inflammasome\u27 that, via caspase-1, controls the catalytic cleavage of the pro-forms of the cytokines IL1beta and IL18 (refs 6, 7). Using mouse and human cells, here we identify the PYHIN (pyrin and HIN domain-containing protein) family member absent in melanoma 2 (AIM2) as a receptor for cytosolic DNA, which regulates caspase-1. The HIN200 domain of AIM2 binds to DNA, whereas the pyrin domain (but not that of the other PYHIN family members) associates with the adaptor molecule ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain) to activate both NF-kappaB and caspase-1. Knockdown of Aim2 abrogates caspase-1 activation in response to cytoplasmic double-stranded DNA and the double-stranded DNA vaccinia virus. Collectively, these observations identify AIM2 as a new receptor for cytoplasmic DNA, which forms an inflammasome with the ligand and ASC to activate caspase-1