149 research outputs found

    Tunable coupler to fully decouple superconducting qubits

    Full text link
    Enhancing the capabilities of superconducting quantum hardware, requires higher gate fidelities and lower crosstalk, particularly in larger scale devices, in which qubits are coupled to multiple neighbors. Progress towards both of these objectives would highly benefit from the ability to fully control all interactions between pairs of qubits. Here we propose a new coupler model that allows to fully decouple dispersively detuned Transmon qubits from each other, i.e. ZZ-crosstalk is completely suppressed while maintaining a maximal localization of the qubits' computational basis states. We further reason that, for a dispersively detuned Transmon system, this can only be the case if the anharmonicity of the coupler is positive at the idling point. A simulation of a 40ns CZ-gate for a lumped element model suggests that achievable process infidelity can be pushed below the limit imposed by state-of-the-art coherence times of Transmon qubits. On the other hand, idle gates between qubits are no longer limited by parasitic interactions. We show that our scheme can be applied to large integrated qubit grids, where it allows to fully isolate a pair of qubits, that undergoes a gate operation, from the rest of the chip while simultaneously pushing the fidelity of gates to the limit set by the coherence time of the individual qubits.Comment: 6 pages, 4 figure

    Diagnosing magnetars with transient cooling

    Get PDF
    Transient X-ray emission, with an approximate t^{-0.7} decay, was observed from SGR 1900+14 over 40 days following the the giant flare of 27 Aug 1998. We calculate in detail the diffusion of heat to the surface of a neutron star through an intense 10^{14}-10^{15} G magnetic field, following the release of magnetic energy in its outer layers. We show that the power law index, the fraction of burst energy in the afterglow, and the return to persistent emission can all be understood if the star is composed of normal baryonic material.Comment: 9 pages, 1 eps figur

    Entanglement Stabilization using Parity Detection and Real-Time Feedback in Superconducting Circuits

    Full text link
    Fault tolerant quantum computing relies on the ability to detect and correct errors, which in quantum error correction codes is typically achieved by projectively measuring multi-qubit parity operators and by conditioning operations on the observed error syndromes. Here, we experimentally demonstrate the use of an ancillary qubit to repeatedly measure the ZZZZ and XXXX parity operators of two data qubits and to thereby project their joint state into the respective parity subspaces. By applying feedback operations conditioned on the outcomes of individual parity measurements, we demonstrate the real-time stabilization of a Bell state with a fidelity of F74%F\approx 74\% in up to 12 cycles of the feedback loop. We also perform the protocol using Pauli frame updating and, in contrast to the case of real-time stabilization, observe a steady decrease in fidelity from cycle to cycle. The ability to stabilize parity over multiple feedback rounds with no reduction in fidelity provides strong evidence for the feasibility of executing stabilizer codes on timescales much longer than the intrinsic coherence times of the constituent qubits.Comment: 12 pages, 10 figures. Update: Fig. 5 correcte

    The Jacobi orientation and the two-variable elliptic genus

    Full text link
    We explain the relationship between the sigma orientation and Witten genus on the one hand and the two-variable elliptic genus on the other. We show that if E is an elliptic spectrum, then the Theorem of the Cube implies the existence of canonical SU-orientation of the associated spectrum of Jacobi forms. In the case of the elliptic spectrum associated to the Tate curve, this gives the two-variable elliptic genus. We also show that the two-variable genus arises as an instance of the circle-equivariant sigma orientation.Comment: Revised to better exhibit complex orientation of MSU^(CP^\infty_{-infty}

    Studying Light-Harvesting Models with Superconducting Circuits

    Full text link
    The process of photosynthesis, the main source of energy in the animate world, converts sunlight into chemical energy. The surprisingly high efficiency of this process is believed to be enabled by an intricate interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a new approach for studying photosynthetic models based on superconducting quantum circuits. In particular, we demonstrate the unprecedented versatility and control of our method in an engineered three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10510^5. With this system we show that the excitation transport between quantum coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.Comment: 8+12 pages, 4+12 figure

    Realizing a Deterministic Source of Multipartite-Entangled Photonic Qubits

    Full text link
    Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled experimental setting. While multi-mode entangled states of radiation have been generated in various platforms, all previous experiments are either probabilistic or restricted to generate specific types of states with a moderate entanglement length. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to N=4N=4 photonic modes and infer the quantum state for even larger NN from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits, outperforming any previous deterministic scheme

    Intermodulation Distortion in a Josephson Traveling Wave Parametric Amplifier

    Full text link
    Josephson traveling wave parametric amplifiers enable the amplification of weak microwave signals close to the quantum limit with large bandwidth, which has a broad range of applications in superconducting quantum computing and in the operation of single-photon detectors. While the large bandwidth allows for their use in frequency-multiplexed detection architectures, an increased number of readout tones per amplifier puts more stringent requirements on the dynamic range to avoid saturation. Here, we characterize the undesired mixing processes between the different frequency-multiplexed tones applied to a Josephson traveling wave parametric amplifier, a phenomenon also known as intermodulation distortion. The effect becomes particularly significant when the amplifier is operated close to its saturation power. Furthermore, we demonstrate that intermodulation distortion can lead to significant crosstalk and reduction of fidelity for multiplexed readout of superconducting qubits. We suggest using large detunings between the pump and signal frequencies to mitigate crosstalk. Our work provides insights into the limitations of current Josephson traveling wave parametric amplifiers and highlights the importance of performing further research on these devices.Comment: 11 pages, 12 figure
    corecore