208 research outputs found

    Importance of Fuel Cell Tests for Stability Assessment - Suitability of Titanium Diboride as an Alternative Support Material

    Get PDF
    Carbon corrosion is a severe issue limiting the long-term stability of carbon- supported catalysts, in particular in the highly dynamic conditions of automotive applications. (Doped) oxides have been discussed as suitable alternatives to replace carbon, but often suffer from poor electron conductivity. That is why non-oxide ceramics, such as tungsten carbide and titanium nitride, have been discussed recently. Titanium diboride has also been proposed, due to its promising activity and stability in an aqueous electrochemical cell. In this work, Pt nanoparticles were deposited onto ÎŒm- sized TiB2 particles with improved grain size, manufactured into porous gas diffusion electrodes and tested in a realistic polymer electrolyte membrane (PEM) fuel cell environment. In contrast to the model studies in an aqueous electrochemical cell, in the presence of oxygen and high potentials at the cathode side of a real fuel cell, TiB2 becomes rapidly oxidized as indicated by intensely colored regions in the membrane-electrode assembly (MEA). Moreover, already the electrode manufacturing process led to the formation of titanium oxides, as shown by X-ray diffraction measurements. This demonstrates that Cyclic Voltammetry (CV) measurements in an aqueous electrochemical cell are not sufficient to prove stability of novel materials for fuel cell applications

    Parameterized Reinforcement Learning for Optical System Optimization

    Get PDF
    Designing a multi-layer optical system with designated optical characteristics is an inverse design problem in which the resulting design is determined by several discrete and continuous parameters. In particular, we consider three design parameters to describe a multi-layer stack: Each layer's dielectric material and thickness as well as the total number of layers. Such a combination of both, discrete and continuous parameters is a challenging optimization problem that often requires a computationally expensive search for an optimal system design. Hence, most methods merely determine the optimal thicknesses of the system's layers. To incorporate layer material and the total number of layers as well, we propose a method that considers the stacking of consecutive layers as parameterized actions in a Markov decision process. We propose an exponentially transformed reward signal that eases policy optimization and adapt a recent variant of Q-learning for inverse design optimization. We demonstrate that our method outperforms human experts and a naive reinforcement learning algorithm concerning the achieved optical characteristics. Moreover, the learned Q-values contain information about the optical properties of multi-layer optical systems, thereby allowing physical interpretation or what-if analysis.Comment: Presented as a poster at the workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 202

    Intermodulation Distortion in a Josephson Traveling Wave Parametric Amplifier

    Full text link
    Josephson traveling wave parametric amplifiers enable the amplification of weak microwave signals close to the quantum limit with large bandwidth, which has a broad range of applications in superconducting quantum computing and in the operation of single-photon detectors. While the large bandwidth allows for their use in frequency-multiplexed detection architectures, an increased number of readout tones per amplifier puts more stringent requirements on the dynamic range to avoid saturation. Here, we characterize the undesired mixing processes between the different frequency-multiplexed tones applied to a Josephson traveling wave parametric amplifier, a phenomenon also known as intermodulation distortion. The effect becomes particularly significant when the amplifier is operated close to its saturation power. Furthermore, we demonstrate that intermodulation distortion can lead to significant crosstalk and reduction of fidelity for multiplexed readout of superconducting qubits. We suggest using large detunings between the pump and signal frequencies to mitigate crosstalk. Our work provides insights into the limitations of current Josephson traveling wave parametric amplifiers and highlights the importance of performing further research on these devices.Comment: 11 pages, 12 figure

    Pharmacokinetic modelling of orally administered cannabidiol and implications for medication control in horses

    Get PDF
    Cannabidiol (CBD) products gain increasing popularity amongst animal owners and veterinarians as an alternative remedy for treatment of stress, inflammation or pain in horses. Whilst the use of cannabinoids is banned in equine sports, there is limited information available concerning CBD detection times in blood or urine. The aim of this study was to determine the pharmacokinetic properties of CBD following oral administration in the horse to assist doping control laboratories with interpreting CBD analytical results. Part 1: dose escalation study: Single oral administration of three escalating doses of CBD paste (0.2 mg/kg, n = 3 horses; 1 mg/kg, n = 3; 3 mg/kg, n = 5) with >7 days wash-out periods in between. Part 2: multiple dose study: oral administration of CBD paste (3 mg/kg, n = 6) twice daily for 15 days. Multiple blood and urine samples were collected daily throughout both studies. Following study part 2, blood and urine samples were collected for 2 weeks to observe the elimination phase. Concentrations of CBD, its metabolites and further cannabinoids were evaluated using gas-chromatography/tandem-mass-spectrometry. Pharmacokinetic parameters were assessed via two approaches: population pharmacokinetic analysis using a nonlinear mixed-effects model and non-compartmental analysis. AUC0–12 h and Cmax were tested for dose proportionality. During the elimination phase, the CBD steady-state urine to serum concentration ratio (Rss) was calculated. Oral CBD medication was well-tolerated in horses. Based on population pharmacokinetics, a three-compartment model with zero-order absorption most accurately described the pharmacokinetic properties of CBD. High volumes of distribution into peripheral compartments and high concentrations of 7-carboxy-CBD were observed in serum. Non-compartmental analysis identified a Cmax of 12.17 ± 2.08 ng/mL after single administration of CBD (dose: 3 mg/kg). AUC0–12 h showed dose proportionality, increase for Cmax leveled off at higher doses. Following multiple doses, the CBD terminal half-life was 161.29 ± 43.65 h in serum. Rss was 4.45 ± 1.04. CBD is extensively metabolized and shows high volumes of tissue distribution with a resulting extended elimination phase. Further investigation of the potential calming and anti-inflammatory effects of CBD are required to determine cut-off values for medication control using the calculated Rss

    Computed tomographic study analysing functional biomechanics in the thoracolumbar spine of horses with and without spinal pathology

    Get PDF
    To better understand physiological and pathological movement patterns in the equine thoracolumbar spine, investigation of the biomechanics on a segmental level requires a constant moment. A constant moment along the spinal column means that the same torque acts on each vertebral segment, allowing the range of motion of different segments to be compared. The aims of this study were to investigate the range of motion of the equine thoracolumbar spine in horses with and without spinal pathology and to examine whether the pressure between the spinous processes depends on the direction of the applied moment. Thoracolumbar spine specimens (T8-L4) of 23 horses were mounted in a custom-made mechanical test rig to investigate spinal biomechanics during lateral bending, axial rotation, flexion and extension using computed tomographic imaging. Results were compared between horses with spondylosis, overriding spinous processes and specimens free of gross pathology. The interspinous space pressure was additionally determined using a foil sensor. The median lateral bending between T9 and L3 was 3.7°–4.1° (IQR 5.4°–8.0°). Maximum rotational movement with inconsistent coupled motion was observed at T9–T16 (p < 0.05). The dorsoventral range of motion was greatest in segments T9–T11 (p < 0.05). Spondylosis and overriding spinous processes restricted spinal mobility, depending on the severity of the condition. There was no significant difference in interspinous pressure during motion (p = 0.54). The biomechanical study confirmed that the range of motion of intervertebral joints depends on the anatomical position of the joint and the direction of the moment applied. Restricted mobility was evident in the presence of different grades of overriding spinous processes or spondylosis. A better understanding of equine spinal biomechanics in horses with spinal pathology facilitates individual rehabilitation

    Hemophilia treatment in 2021: choosing the”optimal” treatment using an integrative, patient-oriented approach to shared decision-making between patients and clinicians

    Full text link
    The mainstay of hemophilia treatment is to prevent bleeding through regular long-term prophylaxis and to control acute breakthrough bleeds. Various treatment options are currently available for prophylaxis, and treatment decision-making is a challenging and multifaceted process of identifying the most appropriate option for each patient. A multidisciplinary expert panel convened to develop a practical, patient-oriented algorithm to facilitate shared treatment decision-making between clinicians and patients. Key variables were identified, and an algorithm proposed based on five variables: bleeding phenotype, musculoskeletal status, treatment adherence, venous access, and lifestyle. A complementary, patient-focused preference tool was also hypothesized, with the aim of exploring individual patients' priorities, preferences, and goals. It is hoped that the proposed algorithm and the hypothesized patient preference tool will assist in selecting a treatment for each patient that is as efficient as possible in preventing bleeds while also accounting for the patient's expectations and prioritiesFunded by a grant from Novo Nordis

    Gentherapie der HĂ€mophilie: Empfehlung der Gesellschaft fĂŒr Thrombose- und HĂ€mostaseforschung (GTH).

    Get PDF
    Gene therapy has recently become a realistic treatment perspective for patients with haemophilia. Reviewing the literature and our personal experience from clinical trials, we discuss key aspects of haemophilia A and B gene therapy with vectors derived from adeno-associated virus (AAV), including predictable results, risks, adverse events, and patient-reported outcomes. Patient selection, informed consent, administration, and monitoring of gene therapy as well as data collection are explained. We also discuss the need for interdisciplinary cooperation with hepatology and other specialties. We emphasize structural and organizational requirements for treatment centres according to the hub-and-spoke model and recommend the use of electronic diaries to ensure safe and timely collection and exchange of data. Electronic diaries will play a key role as primary source of data for pharmacovigilance, post-marketing clinical studies, national and international registries, as well as health technology and benefit assessment. Reimbursement aspects and the future of gene therapy in adolescents and children are also considered. In a rapidly evolving scientific environment, these recommendations aim to support treatment providers and payers to prepare for the implementation of gene therapy following marketing authorization
    • 

    corecore