440 research outputs found

    Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhimurium Q1

    Get PDF
    Here, we report the draft genome sequence of Salmonella enterica subsp. enterica serovar Typhimurium strain Q1. The draft genome contains 4,793,493 bp in 149 contigs

    Draft Genome Sequence of Staphylococcus pseudintermedius Strain 13-13613, Isolated from a Case of Canine Pyoderma

    Get PDF
    Here, we report the draft genome sequence of Staphylococcus pseudintermedius strain 13-13613, isolated from a case of canine pyoderma. The draft genome contains 2,533,486 bp in 570 contigs

    Complete high-quality genome sequence of Clostridium limosum (Hathewaya limosa) isolate 14S0207, recovered from a cow with suspected blackleg in Germany

    Get PDF
    Clostridium limosum can be found in soil and the intestinal tract of animals. In 2014, C. limosum was isolated from a suspected blackleg outbreak in cattle in Schleswig-Holstein, Germany. We present a complete genome sequence of a C. limosum strain represented by a circular chromosome and three plasmids

    Effects of a Four-Week High-Dosage Zinc Oxide Supplemented Diet on Commensal Escherichia coli of Weaned Pigs

    Get PDF
    Strategies to reduce economic losses associated with post-weaning diarrhea in pig farming include high-level dietary zinc oxide supplementation. However, excessive usage of zinc oxide in the pig production sector was found to be associated with accumulation of multidrug resistant bacteria in these animals, presenting an environmental burden through contaminated manure. Here we report on zinc tolerance among a random selection of intestinal Escherichia coli comprising of different antibiotic resistance phenotypes and sampling sites isolated during a controlled feeding trial from 16 weaned piglets: In total, 179 isolates from “pigs fed with high zinc concentrations” (high zinc group, [HZG]: n = 99) and a corresponding “control group” ([CG]: n = 80) were investigated with regard to zinc tolerance, antimicrobial- and biocide susceptibilities by determining minimum inhibitory concentrations (MICs). In addition, in silico whole genome screening (WGSc) for antibiotic resistance genes (ARGs) as well as biocide- and heavy metal tolerance genes was performed using an in-house BLAST-based pipeline. Overall, porcine E. coli isolates showed three different ZnCl2 MICs: 128 μg/ml (HZG, 2%; CG, 6%), 256 μg/ml (HZG, 64%; CG, 91%) and 512 μg/ml ZnCl2 (HZG, 34%, CG, 3%), a unimodal distribution most likely reflecting natural differences in zinc tolerance associated with different genetic lineages. However, a selective impact of the zinc-rich supplemented diet seems to be reasonable, since the linear mixed regression model revealed a statistically significant association between “higher” ZnCl2 MICs and isolates representing the HZG as well as “lower ZnCl2 MICs” with isolates of the CG (p = 0.005). None of the zinc chloride MICs was associated with a particular antibiotic-, heavy metal- or biocide- tolerance/resistance phenotype. Isolates expressing the 512 μg/ml MIC were either positive for ARGs conferring resistance to aminoglycosides, tetracycline and sulfamethoxazole-trimethoprim, or harbored no ARGs at all. Moreover, WGSc revealed a ubiquitous presence of zinc homeostasis and – detoxification genes, including zitB, zntA, and pit. In conclusion, we provide evidence that zinc-rich supplementation of pig feed selects for more zinc tolerant E. coli, including isolates harboring ARGs and biocide- and heavy metal tolerance genes – a putative selective advantage considering substances and antibiotics currently used in industrial pork production systems

    Elizabethkingia miricolainfection in multiple anuran species

    Get PDF
    This report describes an outbreak of Elizabethkingia miricola in northern leopard frogs (Lithobates pipiens) and three other species of frogs and toads held in captivity in Germany. The authors examine several treatment options and underline the difficulties in treating larger numbers of individuals with antimicrobials applied through bathing. Whole genome sequencing of three bacterial isolates emphasizes their relatedness to other frog isolates and leads us to conclude that E. miricola is an emerging and difficult to treat pathogen with a broad host range across anuran species. Moreover, ambiguities in identification of flavobacteria associated with disease in frogs reported in the literature make it seem possible that E. miricola has been overlooked as an anuran pathogen in the past

    Evidence for Contemporary Switching of the O-Antigen Gene Cluster between Shiga Toxin-Producing Escherichia coli Strains Colonizing Cattle

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) comprise a group of zoonotic enteric pathogens with ruminants, especially cattle, as the main reservoir. O-antigens are instrumental for host colonization and bacterial niche adaptation. They are highly immunogenic and, therefore, targeted by the adaptive immune system. The O-antigen is one of the most diverse bacterial cell constituents and variation not only exists between different bacterial species, but also between individual isolates/strains within a single species. We recently identified STEC persistently infecting cattle and belonging to the different serotypes O156:H25 (n = 21) and O182:H25 (n = 15) that were of the MLST sequence types ST300 or ST688. These STs differ by a single nucleotide in purA only. Fitness-, virulence-associated genome regions, and CRISPR/CAS (clustered regularly interspaced short palindromic repeats/CRISPR associated sequence) arrays of these STEC O156:H25 and O182:H25 isolates were highly similar, and identical genomic integration sites for the stx converting bacteriophages and the core LEE, identical Shiga toxin converting bacteriophage genes for stx1a, identical complete LEE loci, and identical sets of chemotaxis and flagellar genes were identified. In contrast to this genomic similarity, the nucleotide sequences of the O-antigen gene cluster (O-AGC) regions between galF and gnd and very few flanking genes differed fundamentally and were specific for the respective serotype. Sporadic aEPEC O156:H8 isolates (n = 5) were isolated in temporal and spatial proximity. While the O-AGC and the corresponding 5′ and 3′ flanking regions of these aEPEC isolates were identical to the respective region in the STEC O156:H25 isolates, the core genome, the virulence associated genome regions and the CRISPR/CAS elements differed profoundly. Our cumulative epidemiological and molecular data suggests a recent switch of the O-AGC between isolates with O156:H8 strains having served as DNA donors. Such O-antigen switches can affect the evaluation of a strain's pathogenic and virulence potential, suggesting that NGS methods might lead to a more reliable risk assessment

    Draft Genome Sequences of Three Porcine Streptococcus suis Isolates Which Differ in Their Susceptibility to Penicillin

    Get PDF
    The draft genome sequences of three Streptococcus suis isolates, IMT40343, IMT40201, and IMT40738, are presented here. These isolates were obtained from bronchoalveolar lavage fluid of healthy and diseased weaners from different German piglet-producing farms and differed in their susceptibility to penicillin

    No evidence of the Shiga toxin-producing E. coli O104:H4 outbreak strain or enteroaggregative E. coli (EAEC) found in cattle faeces in northern Germany, the hotspot of the 2011 HUS outbreak area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ruminants, in particular bovines, are the primary reservoir of Shiga toxin-producing <it>E. coli </it>(STEC), but whole genome analyses of the current German ESBL-producing O104:H4 outbreak strain of sequence type (ST) 678 showed this strain to be highly similar to enteroaggregative <it>E. coli </it>(EAEC). Strains of the EAEC pathotype are basically adapted to the human host. To clarify whether in contrast to this paradigm, the O104:H4 outbreak strain and/or EAEC may also be able to colonize ruminants, we screened a total of 2.000 colonies from faecal samples of 100 cattle from 34 different farms - all located in the HUS outbreak region of Northern Germany - for genes associated with the O104:H4 HUS outbreak strain (<it>stx2</it>, <it>terD</it>, <it>rfb</it><sub>O104</sub>, <it>fliC</it><sub>H4</sub>), STEC (<it>stx1</it>, <it>stx2</it>, <it>escV</it>), EAEC (<it>pAA</it>, <it>aggR, astA</it>), and ESBL-production (<it>bla</it><sub>CTX-M</sub>, <it>bla</it><sub>TEM</sub>, <it>bla</it><sub>SHV</sub>).</p> <p>Results</p> <p>The faecal samples contained neither the HUS outbreak strain nor any EAEC. As the current outbreak strain belongs to ST678 and displays an en-teroaggregative and ESBL-producing phenotype, we additionally screened selected strains for ST678 as well as the aggregative adhesion pattern in HEp-2 cells. However, we were unable to find any strains belonging to ST678 or showing an aggregative adhesion pattern. A high percentage of animals (28%) shed STEC, corroborating previous knowl-edge and thereby proving the validity of our study. One of the STEC also harboured the LEE pathogenicity island. In addition, eleven animals shed ESBL-producing <it>E. coli</it>.</p> <p>Conclusions</p> <p>While we are aware of the limitations of our survey, our data support the theory, that, in contrast to other Shiga-toxin producing <it>E. coli</it>, cattle are not the reservoir for the O104:H4 outbreak strain or other EAEC, but that the outbreak strain seems to be adapted to humans or might have yet another reservoir, raising new questions about the epidemiology of STEC O104:H4.</p

    The type-2 Streptococcus canis M protein SCM-2 binds fibrinogen and facilitates antiphagocytic properties

    Get PDF
    Streptococcus canis is a zoonotic agent that causes severe invasive diseases in domestic animals and humans, but little is known about its pathogenesis and virulence mechanisms so far. SCM, the M-like protein expressed by S. canis, is considered one of the major virulence determinants. Here, we report on the two distinct groups of SCM. SCM-1 proteins were already described to interact with its ligands IgG and plasminogen as well as with itself and confer antiphagocytic capability of SCM-1 expressing bacterial isolates. In contrast, the function of SCM-2 type remained unclear to date. Using whole-genome sequencing and subsequent bioinformatics, FACS analysis, fluorescence microscopy and surface plasmon resonance spectrometry, we demonstrate that, although different in amino acid sequence, a selection of diverse SCM-2-type S. canis isolates, phylogenetically representing the full breadth of SCM-2 sequences, were able to bind fibrinogen. Using targeted mutagenesis of an SCM-2 isolate, we further demonstrated that this strain was significantly less able to survive in canine blood. With respect to similar studies showing a correlation between fibrinogen binding and survival in whole blood, we hypothesize that SCM-2 has an important contribution to the pathogenesis of S. canis in the host

    Characterization of Streptococcus pneumoniae isolates from Austrian companion animals and horses

    Get PDF
    Background: The aim of the present study was to investigate the genetic relatedness and the antimicrobial resistance profiles of a collection of Austrian Streptococcus pneumoniae isolates from companion animals and horses. A total of 12 non-repetitive isolates presumptively identified as S. pneumoniae were obtained during routinely diagnostic activities between March 2009 and January 2017. Results: Isolates were confirmed as S. pneumoniae by bile solubility and optochin susceptibility testing, matrix-assisted laser desorption-ionization-time of flight (MALDI-TOF) mass spectrometry and sequence analysis of a part recA and the 16S rRNA genes. Isolates were further characterized by pneumolysin polymerase chain reaction (PCR) and genotyped by multilocus sequence typing (MLST). Antimicrobial susceptibility testing was performed and resistance genes were detected by specific PCR assays. All isolates were serotyped. Four sequence types (ST) (ST36, ST3546, ST6934 and ST6937) and four serotypes (3, 19A, 19F and 23F) were detected. Two isolates from twelve displayed a multidrug-resistance pheno- and genotype. Conclusions: This study represents the first comprehensive investigation on characteristics of S. pneumoniae isolates recovered from Austrian companion animals and horses. The obtained results indicate that common human sero- (23F) and sequence type (ST36) implicated in causing invasive pneumococcal disease (IPD) may circulate in dogs. Isolates obtained from other examined animals seem to be host-adapted
    • …
    corecore