8 research outputs found

    Blind Source Separation in Nonlinear Mixture for Colored Sources Using Signal Derivatives

    No full text
    International audienceWhile Blind Source Separation (BSS) for linear mixtures has been well studied, the problem for nonlinear mixtures is still thought not to have a general solution. Each of the techniques proposed for solving BSS in nonlinear mixtures works mainly on specific models and cannot be generalized for many other realistic applications. Our approach in this paper is quite different and targets the general form of the problem. In this advance, we transform the nonlinear problem to a time-variant linear mixtures of the source derivatives. The proposed algorithm is based on separating the derivatives of the sources by a modified novel technique that has been developed and specialized for the problem, which is followed by an integral operator for reconstructing the sources. Our simulations show that this method separates the nonlinearly mixed sources with outstanding performance; however , there are still a few more steps to be taken to get to a comprehensive solution which are mentioned in the discussion

    Blind Source Separation in Nonlinear Mixtures

    No full text
    La séparation aveugle de sources aveugle (BSS) est une technique d’estimation des différents signaux observés au travers de leurs mélanges à l’aide de plusieurs capteurs, lorsque le mélange et les signaux sont inconnus. Bien qu’il ait été démontré mathématiquement que pour des mélanges linéaires, sous des conditions faibles, des sources mutuellement indépendantes peuvent être estimées, il n’existe dans de résultats théoriques généraux dans le cas de mélanges non-linéaires. La littérature sur ce sujet est limitée à des résultats concernant des mélanges non linéaires spécifiques.Dans la présente étude, le problème est abordé en utilisant une nouvelle approche utilisant l’information temporelle des signaux. L’idée originale conduisant à ce résultat, est d’étudier le problème de mélanges linéaires, mais variant dans le temps, déduit du problème non linéaire initial par dérivation. Il est démontré que les contre-exemples déjà présentés, démontrant l’inefficacité de l’analyse par composants indépendants (ACI) pour les mélanges non-linéaires, perdent leur validité, considérant l’indépendance au sens des processus stochastiques, au lieu de l’indépendance au sens des variables aléatoires. Sur la base de cette approche, de bons résultats théoriques et des développements algorithmiques sont fournis. Bien que ces réalisations ne soient pas considérées comme une preuve mathématique de la séparabilité des mélanges non-linéaires, il est démontré que, compte tenu de quelques hypothèses satisfaites dans la plupart des applications pratiques, elles sont séparables.De plus, les BSS non-linéaires pour deux ensembles utiles de signaux sources sont également traités, lorsque les sources sont (1) spatialement parcimonieuses, ou (2) des processus Gaussiens. Des méthodes BSS particulières sont proposées pour ces deux cas, dont chacun a été largement étudié dans la littérature qui correspond à des propriétés réalistes pour de nombreuses applications pratiques.Dans le cas de processus Gaussiens, il est démontré que toutes les applications non-linéaires ne peuvent pas préserver la gaussianité de l’entrée, cependant, si on restreint l’étude aux fonctions polynomiales, la seule fonction préservant le caractère gaussiens des processus (signaux) est la fonction linéaire. Cette idée est utilisée pour proposer un algorithme de linéarisation qui, en cascade par une méthode BSS linéaire classique, sépare les mélanges polynomiaux de processus Gaussiens.En ce qui concerne les sources parcimonieuses, on montre qu’elles constituent des variétés distinctes dans l’espaces des observations et peuvent être séparées une fois que les variétés sont apprises. À cette fin, plusieurs problèmes d’apprentissage multiple ont été généralement étudiés, dont les résultats ne se limitent pas au cadre proposé du SRS et peuvent être utilisés dans d’autres domaines nécessitant un problème similaire.Blind Source Separation (BSS) is a technique for estimating individual source components from their mixtures at multiple sensors, where the mixing model is unknown. Although it has been mathematically shown that for linear mixtures, under mild conditions, mutually independent sources can be reconstructed up to accepted ambiguities, there is not such theoretical basis for general nonlinear models. This is why there are relatively few results in the literature in this regard in the recent decades, which are focused on specific structured nonlinearities.In the present study, the problem is tackled using a novel approach utilizing temporal information of the signals. The original idea followed in this purpose is to study a linear time-varying source separation problem deduced from the initial nonlinear problem by derivations. It is shown that already-proposed counter-examples showing inefficiency of Independent Component Analysis (ICA) for nonlinear mixtures, loose their validity, considering independence in the sense of stochastic processes instead of simple random variables. Based on this approach, both nice theoretical results and algorithmic developments are provided. Even though these achievements are not claimed to be a mathematical proof for the separability of nonlinear mixtures, it is shown that given a few assumptions, which are satisfied in most practical applications, they are separable.Moreover, nonlinear BSS for two useful sets of source signals is also addressed: (1) spatially sparse sources and (2) Gaussian processes. Distinct BSS methods are proposed for these two cases, each of which has been widely studied in the literature and has been shown to be quite beneficial in modeling many practical applications.Concerning Gaussian processes, it is demonstrated that not all nonlinear mappings can preserve Gaussianity of the input. For example being restricted to polynomial functions, the only Gaussianity-preserving function is linear. This idea is utilized for proposing a linearizing algorithm which, cascaded by a conventional linear BSS method, separates polynomial mixturesof Gaussian processes.Concerning spatially sparse sources, it is shown that spatially sparsesources make manifolds in the observations space, and can be separated once the manifolds are clustered and learned. For this purpose, multiple manifold learning problem has been generally studied, whose results are not limited to the proposed BSS framework and can be employed in other topics requiring a similar issue

    SĂ©paration de Sources Dans des MĂ©langes non-Lineaires

    No full text
    Blind Source Separation (BSS) is a technique for estimating individual source components from their mixtures at multiple sensors, where the mixing model is unknown. Although it has been mathematically shown that for linear mixtures, under mild conditions, mutually independent sources can be reconstructed up to accepted ambiguities, there is not such theoretical basis for general nonlinear models. This is why there are relatively few results in the literature in this regard in the recent decades, which are focused on specific structured nonlinearities.In the present study, the problem is tackled using a novel approach utilizing temporal information of the signals. The original idea followed in this purpose is to study a linear time-varying source separation problem deduced from the initial nonlinear problem by derivations. It is shown that already-proposed counter-examples showing inefficiency of Independent Component Analysis (ICA) for nonlinear mixtures, loose their validity, considering independence in the sense of stochastic processes instead of simple random variables. Based on this approach, both nice theoretical results and algorithmic developments are provided. Even though these achievements are not claimed to be a mathematical proof for the separability of nonlinear mixtures, it is shown that given a few assumptions, which are satisfied in most practical applications, they are separable.Moreover, nonlinear BSS for two useful sets of source signals is also addressed: (1) spatially sparse sources and (2) Gaussian processes. Distinct BSS methods are proposed for these two cases, each of which has been widely studied in the literature and has been shown to be quite beneficial in modeling many practical applications.Concerning Gaussian processes, it is demonstrated that not all nonlinear mappings can preserve Gaussianity of the input. For example being restricted to polynomial functions, the only Gaussianity-preserving function is linear. This idea is utilized for proposing a linearizing algorithm which, cascaded by a conventional linear BSS method, separates polynomial mixturesof Gaussian processes.Concerning spatially sparse sources, it is shown that spatially sparsesources make manifolds in the observations space, and can be separated once the manifolds are clustered and learned. For this purpose, multiple manifold learning problem has been generally studied, whose results are not limited to the proposed BSS framework and can be employed in other topics requiring a similar issue.La séparation aveugle de sources aveugle (BSS) est une technique d’estimation des différents signaux observés au travers de leurs mélanges à l’aide de plusieurs capteurs, lorsque le mélange et les signaux sont inconnus. Bien qu’il ait été démontré mathématiquement que pour des mélanges linéaires, sous des conditions faibles, des sources mutuellement indépendantes peuvent être estimées, il n’existe dans de résultats théoriques généraux dans le cas de mélanges non-linéaires. La littérature sur ce sujet est limitée à des résultats concernant des mélanges non linéaires spécifiques.Dans la présente étude, le problème est abordé en utilisant une nouvelle approche utilisant l’information temporelle des signaux. L’idée originale conduisant à ce résultat, est d’étudier le problème de mélanges linéaires, mais variant dans le temps, déduit du problème non linéaire initial par dérivation. Il est démontré que les contre-exemples déjà présentés, démontrant l’inefficacité de l’analyse par composants indépendants (ACI) pour les mélanges non-linéaires, perdent leur validité, considérant l’indépendance au sens des processus stochastiques, au lieu de l’indépendance au sens des variables aléatoires. Sur la base de cette approche, de bons résultats théoriques et des développements algorithmiques sont fournis. Bien que ces réalisations ne soient pas considérées comme une preuve mathématique de la séparabilité des mélanges non-linéaires, il est démontré que, compte tenu de quelques hypothèses satisfaites dans la plupart des applications pratiques, elles sont séparables.De plus, les BSS non-linéaires pour deux ensembles utiles de signaux sources sont également traités, lorsque les sources sont (1) spatialement parcimonieuses, ou (2) des processus Gaussiens. Des méthodes BSS particulières sont proposées pour ces deux cas, dont chacun a été largement étudié dans la littérature qui correspond à des propriétés réalistes pour de nombreuses applications pratiques.Dans le cas de processus Gaussiens, il est démontré que toutes les applications non-linéaires ne peuvent pas préserver la gaussianité de l’entrée, cependant, si on restreint l’étude aux fonctions polynomiales, la seule fonction préservant le caractère gaussiens des processus (signaux) est la fonction linéaire. Cette idée est utilisée pour proposer un algorithme de linéarisation qui, en cascade par une méthode BSS linéaire classique, sépare les mélanges polynomiaux de processus Gaussiens.En ce qui concerne les sources parcimonieuses, on montre qu’elles constituent des variétés distinctes dans l’espaces des observations et peuvent être séparées une fois que les variétés sont apprises. À cette fin, plusieurs problèmes d’apprentissage multiple ont été généralement étudiés, dont les résultats ne se limitent pas au cadre proposé du SRS et peuvent être utilisés dans d’autres domaines nécessitant un problème similaire

    Blind compensation of polynomial mixtures of Gaussian signals with application in nonlinear blind source separation

    No full text
    International audienceIn this paper, a proof is provided to show that Gaussian signals will lose their Gaussianity if they are passed through a polynomial of an order greater than 1. This can help in blind compensation of polynomial nonlinearities on Gaussian sources by forcing the output to follow a Gaussian distribution (the term " blind " refers to lack of any prior information about the nonlinear function). It may have many applications in different fields of nonlinear signal processing for removing the nonlinearity. Particularly, in nonlinear blind source separation , it can be used as a pre-processing step to transform the problem to a linear one, which is already well studied in the literature. This idea is proposed, proved, and finally verified by a simple simulation as a proof of concept in this paper

    Nonlinear Blind Source Separation for Sparse Sources

    No full text
    International audience—Blind Source Separation (BSS) is the problem of separating signals which are mixed through an unknown function from a number of observations, without any information about the mixing model. Although it has been mathematically proven that the separation can be done when the mixture is linear, there is not any proof for the separability of nonlinearly mixed signals. Our contribution in this paper is performing nonlinear BSS for sparse sources. It is shown in this case, sources are separable even if the problem is under-determined (the number of observations is less that the number of source signals). However in the most general case (when the nonlinear mixing model can be of any kind and there is no side-information about that), an unknown nonlinear transformation of each source is reconstructed. It is shown why the problem reconstructing the exact sources is severely ill-posed and impossible to do without any other information

    Blind Source Separation in Nonlinear Mixtures: Separability and a Basic Algorithm

    Get PDF
    International audienceIn this paper, a novel approach for performing Blind Source Separation (BSS) in nonlinear mixtures is proposed, and their separability is studied. It is shown that this problem can be solved under a few assumptions, which are satisfied in most practical applications. The main idea can be considered as transforming a time-invariant nonlinear BSS problem to local linear ones varying along the time, using the derivatives of both sources and observations. Taking into account the proposed idea, numerous algorithms can be developed performing the separation. In this regard, an algorithm, supported by simulation results, is also proposed in this paper. It can be seen that the algorithm well separates the mixed sources, however, as the conventional linear BSS methods, the nonlinear BSS suffers from ambiguities, which are discussed in the paper

    Gaussian Processes for Source Separation in Overdetermined Bilinear Mixtures

    No full text
    International audienceIn this work, we consider the nonlinear Blind Source Separation (BSS) problem in the context of overdetermined Bilinear Mixtures, in which a linear structure can be employed for performing separation. Based on the Gaussian Process (GP) framework, two approaches are proposed: the predictive distribution and the maximization of the marginal likelihood. In both cases, separation can be achieved by assuming that the sources are Gaussian and temporally correlated. The results with synthetic data are favorable to the proposal

    Relationships between nonlinear and space-variant linear models in hyperspectral image unmixing

    No full text
    International audienceHyperspectral image unmixing is a source separation problem whose goal is to identify the signatures of the materials present in the imaged scene (called endmembers), and to estimate their proportions (called abundances) in each pixel. Usually, the contributions of each material are assumed to be perfectly represented by a single spectral signature and to add up in a linear way. However, the main two limitations of this model have been identified as nonlinear mixing phenomena and spectral variability, i.e. the intraclass variability of the materials. The former limitation has been addressed by designing non linear mixture models, while the second can be dealt with by using (usually linear) space varying models. The typical example is a linear mixing model where the sources can vary from one pixel to the other. In this letter, we show that a recent variability model can also estimate the abundances of nonlinear mixtures to some extent. We make the theoretical connection between nonlinear models and this variability model, and confirm it with experiments on nonlinearly generated synthetic datasets
    corecore