474 research outputs found

    Leveraging mobile health technology and research methodology to optimize patient education and self-management support for advanced cancer pain

    Get PDF
    Funding: National Institutes of Health [R21 NR017745, PI, Enzinger]; Friends of Dana-Farber Cancer Institute. Availability of data and material: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.Peer reviewedPostprin

    Virtual Gastroenterology Fellowship Recruitment During COVID-19 and Its Implications for the Future

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background and Aims Amid the COVID-19 pandemic, medical education organizations endorsed a virtual recruitment format, representing a stark change from traditional in-person interviews. We aimed to identify the attitudes and perceptions of Gastroenterology Fellowship Program Directors (PDs) and applicants regarding the virtual interview experience and the role of virtual interviews (VI) in the future. Methods We designed separate surveys targeting PDs and applicants using the Qualtrics software. At the end of the interview season, we e-mailed both survey links to all PDs and requested that they forward the applicant survey to their interviewed candidates. Surveys were voluntary and anonymous. Descriptive statistics were used to analyze the data with results presented as percentages. Results A total of 29.7% of PDs completed the survey. Compared to traditional interviews, VI were viewed by 46.5% of PDs to be very suboptimal or suboptimal. Yet, 69.1% envisioned a role for VI in the future. A total of 14.2% of applicants completed the survey. Compared to traditional interviews, VI were viewed by 42.3% of applicants to be very suboptimal or suboptimal. However, 61.8% saw a future role for VI. While both applicants and PDs reported that establishing an interpersonal connection was a disadvantage with VI, applicants placed more emphasis on this need for connection (p = 0.001). Conclusion Overall, PDs and applicants report mixed views with regard to VI but anticipate that it may continue to have a future role. VI may augment future recruitment cycles with care taken to not disadvantage applicants, who rely heavily on the interview process to create personal connections with programs

    Moments of the B Meson Inclusive Semileptonic Decay Rate using Neutrino Reconstruction

    Get PDF
    We present a measurement of the composition of B meson inclusive semileptonic decays using 9.4 fb^-1 of e^+e^- data taken with the CLEO detector at the Upsilon(4S) resonance. In addition to measuring the charged lepton kinematics, the neutrino four-vector is inferred using the hermiticity of the detector. We perform a maximum likelihood fit over the full three-dimensional differential decay distribution for the fractional contributions from the B -> X_c l nu processes with X_c = D, D*, D**, and nonresonant X_c, and the process B -> X_u l nu. From the fit results we extract the first and second moments of the M_X^2 and q^2 distributions with minimum lepton-energy requirements of 1.0 GeV and 1.5 GeV. We find = 0.456 +- 0.014 +- 0.045 +- 0.109 (GeV/c^2)^2 with a minimum lepton energy of 1.0 GeV and = 0.293 +- 0.012 +- 0.033 +- 0.048 (GeV/c^2)^2 with minimum lepton energy of 1.5 GeV. The uncertainties are from statistics, detector systematic effects, and model dependence, respectively. As a test of the HQET and OPE calculations, the results for the M^X_c moment as a function of the minimum lepton energy requirement are compared to the predictions.Comment: 26 pages postscript, als available through http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with following preprint hep-ex/0403053

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e

    Full text link
    Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+ nu_e. By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat) +/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/ (alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR

    Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)

    Full text link
    The CLEO Collaboration has observed the first hadronic transition among bottomonium (b bbar) states other than the dipion transitions among vector states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays, we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at High Energies, August 2003, Fermila

    Branching Fractions of tau Leptons to Three Charged Hadrons

    Full text link
    From electron-positron collision data collected with the CLEO detector operating at CESR near \sqrt{s}=10.6 GeV, improved measurements of the branching fractions for tau decays into three explicitly identified hadrons and a neutrino are presented as {\cal B}(\tau^-\to\pi^-\pi^+\pi^-\nu_\tau)=(9.13\pm0.05\pm0.46)%, {\cal B}(\tau^-\to K^-\pi^+\pi^-\nu_\tau)=(3.84\pm0.14\pm0.38)\times10^{-3}, {\cal B}(\tau^-\to K^-K^+\pi^-\nu_\tau)=(1.55\pm0.06\pm0.09)\times10^{-3}, and {\cal B}(\tau^-\to K^-K^+K^-\nu_\tau)<3.7\times10^{-5} at 90% C.L., where the uncertainties are statistical and systematic, respectively.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, to appear in Phys. Rev. Let

    Update of the measurement of the cross section for e^+e^- -> psi(3770) -> hadrons

    Full text link
    We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.Comment: 3 pages, 0 figures. This is an erratum to Phys.Rev.Lett.96:092002,2006. Added a reference

    Measurement of the Masses and Widths of the Sigma_c^++ and Sigma_c^0 Charmed Baryons

    Full text link
    Using data recorded by the CLEO II and CLEO II.V detector configurations at CESR, we report new measurements of the masses of the Sigma_c^{++} and Sigma_c^0 charmed baryons, and the first measurements of their intrinsic widths. We find M(Sigma_c^{++}) - M(Lambda_c^+) = 167.4 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^{++}) = 2.3 +- 0.2 +- 0.3 MeV, and M(Sigma_c^0) - M(Lambda_c^+) = 167.2 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^0) = 2.5 +- 0.2 +- 0.3 MeV, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communications. Reference [13] correcte
    corecore