50 research outputs found

    Dune vegetation fertilization by nesting sea turtles

    Get PDF
    Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta N-15 values in dune soils, leaves from a common dune plant ( sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles ( Chelonia mydas) across a nesting gradient ( 200 - 1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta N-15 levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta N-15 values were both positively correlated to turtle nest density. Sea oat leaf tissue delta N-15 was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta N-15, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat

    Pathogenic, Molecular, and Immunological Properties of a Virus Associated with Sea Turtle Fibropapillomatosis. Phase II : Viral Pathogenesis and Development of Diagnostic Assays

    Get PDF
    Research conducted under this RWO from July 1, 1997 through June 30, 2000 has provided important new information about the pathogenesis, virology, and immunology of marine turtle fibropapillomatosis. In particular, we have provided strong evidence for the association of a herpesvirus with fibropapillomatosis of the green turtle,Chelonia mydas, and the loggerhead turtle, Caretta caretta, in Florida. In addition we have provided new evidence for the absence of papillomaviruses from sea turtle fibropapillomas. Although unsuccessful, important new attempts were made to cultivate the FP-associated herpesvirus in vitro in collaboration with the National Wildlife Health Center. During this period of time, we completed publication of the first comprehensive description of the comparative pathology and pathogenesis of experimentally induced and spontaneous fibropapillomas of green turtles (Chelonia mydas). We initiated innovative studies on the persistence of a Chelonian herpesviruses in the marine environment demonstrating for the first time that the environmental survivability of Chelonian herpesviruses makes them real threats to marine turtle health. Finally, we explored development of a serological assay for FP using synthetic herpesvirus peptides and developed methodologies for detection of antibodies to LETV [Iung-eye-trachea virus] a disease-associated herpesvirus of the green turtle, Chelonia mydas.. This last initiative is ongoing and will further our efforts to develop specific immunological assays for the FP-associated herpesvirus and FP. (17 page document

    Inferring Foraging Areas of Nesting Loggerhead Turtles Using Satellite Telemetry and Stable Isotopes

    Get PDF
    In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf-constrained migratory pattern along the northeast U. S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both delta C-13 and delta N-15 among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well delta C-13 and delta N-15 predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid-and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level

    Modeling and mapping isotopic patterns in the Northwest Atlantic derived from loggerhead sea turtles

    Get PDF
    Stable isotope analysis can be used to infer geospatial linkages of highly migratory species. Identifying foraging grounds of marine organisms from their isotopic signatures is becoming de rigueur as it has been with terrestrial organisms. Sea turtles are being increasingly studied using a combination of satellite telemetry and stable isotope analysis; these studies along with those from other charismatic, highly vagile, and widely distributed species (e.g., tuna, billfish, sharks, dolphins, whales) have the potential to yield large datasets to develop methodologies to decipher migratory pathways in the marine realm. We collected tissue samples (epidermis and red blood cells) for carbon (delta C-13) and nitrogen (delta N-15) stable isotope analysis from 214 individual loggerheads (Caretta caretta) in the Northwest Atlantic Ocean (NWA). We used discriminant function analysis (DFA) to examine how well delta C-13 and delta N-15 classify loggerhead foraging areas. The DFA model was derived from isotopic signatures of 58 loggerheads equipped with satellite tags to identify foraging locations. We assessed model accuracy with the remaining 156 untracked loggerheads that were captured at their foraging locations. The DFA model correctly identified the foraging ground of 93.0% of individuals with a probability greater than 66.7%. The results of the external validation (1) confirm that assignment models based on tracked loggerheads in the NWA are robust and (2) provide the first independent evidence supporting the use of these models for migratory marine organisms. Additionally, we used these data to generate loggerhead-specific delta C-13 and delta N-15 isoscapes, the first for a predator in the Atlantic Ocean. We found a latitudinal trend of delta C-13 values with higher values in the southern region (20-25 degrees N) and a more complex pattern with delta N-15, with intermediate latitudes (30-35 degrees N) near large coastal estuaries having higher delta N-15-enrichment. These results indicate that this method with further refinement may provide a viable, more spatially-explicit option for identifying loggerhead foraging grounds

    Overview of the biology of the Loggerhead turtle, Caretta caretta L

    No full text

    A review of sea tunle reproduction

    No full text

    Marine turtles of the Indian River Lagoon system

    No full text

    Trends In Size Class Distribution, Recaptures, And Abundance Of Juvenile Green Turtles (Chelonia Mydas) Utilizing A Rock Riprap Lined Embayment At Port Canaveral, Florida, Usa, As Developmental Habitat

    No full text
    Despite great advances in the understanding of marine turtle biology over the past 60 yrs, there is still a paucity of demographic data on the juvenile stage of their life history. These data are required to adequately predict population trends for these long-lived marine turtle species. In the early 1990s, juvenile green turtles (Chelonia mydas) were observed in the Trident Turning Basin at Port Canaveral, Brevard County, Florida. We began a study in 1993 to assess the species composition, size class distribution, and degree of residency of the marine turtles utilizing this man-made embayment as developmental habitat. The results of the first 18 yrs of that study are related here. Juvenile green turtles constituted 99.4% of the marine turtle captures. Straight carapace lengths (SCL) of turtles ranged from 20.0 to 52.0 cm with a mean of 31.7 cm, smaller than those observed in other known green turtle developmental habitats in Florida. The mean SCL of the green turtles in the basin has declined over the course of the study. Although initially there was a high recapture rate of turtles tagged in the basin, that rate declined significantly along with the size of the turtles at their most recent recapture and the interval of time between their first capture and most recent recapture. We attribute these declines to the increase in the number of juvenile green turtles recruiting to developmental habitats along Florida\u27s east coast and to the limited forage available in the basin. Population surveys over the past 13 yrs of the study yielded estimates that ranged from 27 to 224 green turtles in the basin, with a mean estimate of 61±10 turtles. The results of this study illustrate the value of long-term monitoring projects in understanding both juvenile green turtle habitat preferences and sea turtle population dynamics. © Chelonian Research Foundation

    Activity, Population-Size And Structure Of Immature Chelonia-Mydas And Caretta-Caretta In Mosquito Lagoon, Florida

    No full text
    Mosquito Lagoon, located on the east-central coast of Florida, was found to be a developmental habitat for two species of sea turtles. Populations of the green (Chelonia mydas) and loggerhead (Caretta caretta) turtles found in the lagoon were studied from July, 1976 to March, 1979. All green turtles were immature (N = 108; range 30-59.1 kg); 40% of the sampled individuals weighed less than 20 kg. Almost all loggerheads were immature (N = 104; range 12.8-97.7 kg); only 6% of the sampled number were heavier than 80 kg. Both species of turtles were present in the lagoon throughout the year. Chelonia was more susceptible to net capture during the warmer months. Nocturnal activity was not apparent in either species. The role of developmental habitats in the life history of both species is discussed
    corecore