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Ecology, 88(4), 2007, pp. 1053–1058
� 2007 by the Ecological Society of America

DUNE VEGETATION FERTILIZATION BY NESTING SEA TURTLES

LAURA B. HANNAN, JAMES D. ROTH, LLEWELLYN M. EHRHART, AND JOHN F. WEISHAMPEL
1

Department of Biology, University of Central Florida, Orlando, Florida 32816 USA

Abstract. Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune
ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive
feedback between dune plants and turtle nests exists, we measured N concentration and d15N
values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and
addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting
gradient (200–1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA.
The d15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic
level of loggerhead turtles. Soil N concentration and d15N values were both positively
correlated to turtle nest density. Sea oat leaf tissue d15N was also positively correlated to nest
density, indicating an increased use of augmented marine-based nutrient sources. Foliar N
concentration was correlated with d15N, suggesting that increased nutrient availability from
this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization
and preserving sea turtle nesting habitat.

Key words: allochthonous input, barrier island ecology; Caretta caretta; Chelonia mydas; facilitation;
green turtle; loggerhead; nitrogen deposition; nutrient transport; sea oats; stable isotopes;Uniola paniculata.

INTRODUCTION

Dune ecosystems are often nutrient-poor, harsh

environments (Kachi and Hirose 1983, Hayden et al.

1991, Hesp 1991). Excessively drained, sandy soil leads

to intensive leaching, and thus the system often depends

on allochthonous (originating in another ecosystem)

nutrient inputs from meteorologic (Art et al. 1974) or

marine sources (Heatwole 1971, Allaway and Ashford

1984). Sea turtles, through nesting, annually transport

substantial amounts of nutrients and energy to the

beaches of east central Florida (Bouchard and Bjorndal

2000), originating from Caribbean and Gulf of Mexico

foraging grounds hundreds to thousands of kilometers

away. Sea turtles may stabilize these dune systems,

which provide nesting habitat, by fertilizing dune plants

whose roots reduce beach erosion.

However, the deposition of nutrients does not

necessarily demonstrate that they are assimilated into

the terrestrial ecosystem or are critical for system

functioning. Here, we determined the extent to which

marine-derived nitrogen (N) from sea turtle nesting is

found in the soil and absorbed by the coastal vegetation

by using stable isotope analysis. Marine nutrient sources

are usually enriched in 15N compared to terrestrial

sources (Schoeninger et al. 1982), so differential use of

these sources should be reflected in the stable N isotope

ratios of plant tissues. Our objective was to determine

whether sea turtles function as biogeochemical interfaces

between marine and terrestrial systems, as has been

found with other animals, such as river otters (Ben-

David et al. 1998a), salmon (Ben-David et al. 1998b,

Bartz and Naiman 2005), sea lions (Fariña et al. 2003),

and seabirds (Anderson and Polis 1999, Sánchez-Piñero

and Polis 2000, Ellis et al. 2006). Beyond functioning as

a nutrient vector between ecosystems, sea turtles may

help maintain their own nesting environment by

providing nutrient subsidies to dune vegetation that

plays a role in dune stabilization.

METHODS

The study area is located along a 40.5-km stretch of

beach on the east central coast of Florida that extends

northward from Sebastian Inlet to the Patrick Air Force

Base; the southern 21.0 km is less developed and

incorporates the Archie Carr National Wildlife Refuge.

These beaches provide nesting habitat for the second

largest population of loggerheads (Caretta caretta) in

the world, the largest population of green turtles

(Chelonia mydas) in the continental United States, and

the occasional leatherback (Dermochelys coriacea) (Ehr-
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hart and Raymond 1983; see also Archie Carr National

Wildlife Refuge web site)2. The distribution of nests

along the beach is not uniform, but resembles a gradient

(Weishampel et al. 2003). Over the 15-year period from

1989 through 2003, the southern half of the study area

had 2.3 times the number of loggerhead nests (649

nests�km�1) and 3.8 times the number of green turtle

nests (34.7 nests�km�1) as the northern half. Though the

annual number of nests for each species fluctuates and

loggerhead nesting has been occurring earlier each

season (Weishampel et al. 2004), the general spatial

patterns of nest distribution have been very consistent

inter- and intra-annually (Weishampel et al. 2003, 2006).

Loggerhead and green turtle clutches over a recent 5-

year period averaged 114 eggs and 128 eggs, respectively

(D. Bagley, personal communication), but loggerhead

nests vastly outnumber green turtle nests at this site

(.20:1 from 1989 to 2003). However, green turtles, on

average, nest ;5 m closer to the base of the foredune

than loggerheads do (Witherington 1986). Nest chamber

depth may also affect accessibility of nutrients to plant

roots; loggerheads typically bury their eggs 35 cm below

the surface (Carthy et al. 2003), while the mean depth of

a green turtle clutch is 58 cm (Johnson 1994). Given

oviposition preferences in relation to the foredune, it is

unclear which turtle species may directly contribute

more nutrients. However, among monitored nests, plant

roots penetrated a higher percentage of loggerhead eggs

(0.30%) than green turtle eggs (0.13%; Osegovic 2001).

To assess the contribution of nutrients from marine

turtle nests to dune vegetation, we determined the

overall nitrogen concentration and isotopic signatures

(d15N) in samples of turtle eggs, soils, and sea oats

(Uniola paniculata). This perennial grass is typically the

dominant foredune plant and is considered to be a

pioneer as well as a climax species (see Plate 1). Sea oats

have an association with N-fixing bacteria (Dalton et al.

2004), possibly contributing to its facilitative role in the

beachside community, which is considered economically

important for building and maintaining dunes (Snyder

and Boss 2002, Miller et al. 2003). Its root mass is

primarily concentrated laterally in the upper 30 cm of

the soil, closer to the depths of loggerhead nests, but a

tap root typically extends deeper, toward the depth of

green turtle nests, to ;0.9 m above the water table

(Hester and Mendelssohn 1989).

We collected addled eggs of loggerheads and green

turtles across the gradient of nest densities during the

nesting season (May through September) in 2002.

Addled eggs are those that contain yolk but no visible

sign of development. On these beaches, typically 14% of

the eggs in a nest are addled for each species (Osegovic

2001). Nests were marked the morning after oviposition

by researchers monitoring sea turtle nesting activity

(Weishampel et al. 2003). After 70 days of incubation

(hatchlings on these beaches typically emerge at ;50

days), 20 loggerhead and 16 green turtle nests located

along the 40.5-km stretch of shoreline were excavated

and one unhatched egg was retrieved from each nest for

isotopic analysis.

Samples of the sand-dominated soil were collected

from the foredune (1 m from the base of the dune) at 15

sites situated 1–3.25 km apart along the 40.5-km beach

in April 2003. At each site, a cylindrical soil core (1 m

deep 3 0.03 m in diameter) was acquired. Depths were

mixed for analysis. Sections of sea oat leaf blades were

clipped from different individual plants in August 2002

(N¼13) and April 2003 (N¼21) prior to the onset of the

2003 nesting season (Weishampel et al. 2004). Sea oat

tissues were collected from the foredune from several

ocean side parks and near other beach access points

representing 16 0.5-km beach segments of different

nesting densities. Specific plants were selected without

consideration of distance to specific sea turtle nests or

the soil core samples.

Samples were kept frozen prior to analysis. Plant

samples were rinsed with tap water to remove excess soil

or debris. Shells were removed from eggs. All samples

were freeze-dried for 48 hours before being homogenized

with mortar and pestle. Lipids were removed from eggs

using a Soxhlet apparatus (Fisher Scientific, Waltham,

Massachusetts, USA) with petroleum ether solvent for

12 h. N concentration and d15N of subsamples (1 mg for

eggs, 4 mg for plants, and 40 mg for soils) were

measured using a continuous flow isotope ratio mass

spectrometer in the National Center for Forensic

Science at the University of Central Florida (Orlando,

Florida, USA). N concentration is expressed as a

percentage of dry mass of the soil and tissue samples

and stable isotope ratios are expressed as parts per

thousand (ø) relative to atmospheric N: d15N¼ (Rsmp�

PLATE 1. Dune with sea oats (Uniola paniculata) overlook-
ing the beach at the Archie Carr National Wildlife Refuge,
Florida, USA. Photo credit: L. Hannan.

2 hhttp://www.fws.gov/archiecarr/i
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Rstd)/Rstd, where R ¼ 15N/14N (Lajtha and Marshall

1994).

After evaluating the data for normality and homo-

scedasticity assumptions, N concentration values from

soil and tissue (both addled eggs and sea oats) were

logarithmically and reflect-logarithmically transformed,

respectively. The latter transformation technique is

appropriate when data have a negative skewness

(Tabachnick and Fidell 2007). We conducted one-way

ANOVA analyses on d15N and transformed N-concen-

tration values to assess species-level differences in the

addled-egg tissues and differences in the sea oat tissues

collected in August 2002 and April 2003. Linear-

regression analyses were run to compare turtle nest

densities (loggerhead and green turtle combined) within

each 0.5-km beach segment and corresponding soil and

sea oat d15N and transformed N concentration values.

Because nest densities, especially those of green turtles,

often fluctuate from year to year (Weishampel et al.

2003, 2006) and because sea oats are a perennial grass,

we averaged nest densities over the five-year period that

preceded sampling (1998–2002).

RESULTS

The d15N values of green turtle (6.0ø 6 0.3ø; mean

6 SE) and loggerhead (10.6ø 6 0.6ø) eggs differed

significantly (F1,34 ¼ 36.0, P , 0.001). This difference

was expected, as the largely carnivorous loggerhead

turtles occupy a higher trophic position than the largely

herbivorous green turtles (Godley et al. 1998). Soil

samples increased in N concentration (F1,13 ¼ 5.7, P ¼
0.03, R2¼ 0.31) and d15N (F1,13¼ 15.1, P¼ 0.002, R2¼
0.54) with higher nest density (Fig. 1A, B). Soil N

concentration and d15N were significantly correlated

(Fig. 2A; Pearson r ¼ 0.64, P ¼ 0.01). The sea oats

samples from August 2002 and April 2003 did not differ

in N concentration (F1,32¼ 2.65, P¼ 0.20) or d15N (F1,32

¼ 0.11, P ¼ 0.74); thus, the samples from the two

collection periods were combined. Sea oat N concentra-

tion was two orders of magnitude higher than soil N

concentration but was unrelated to nest density (Fig. 1C;

FIG. 1. Mean five-year (1998–2002) nest density for loggerhead and green turtles within 0.5-km beach segments in relation to
(A) N concentration and (B) d15N in soil cores (open circles); and to (C) N concentration and (D) d15N in sea oat leaf tissue (solid
circles). N concentration is expressed as a percentage of dry mass of the soil and tissue samples, and stable isotope ratios are
expressed as parts per thousand (ø) relative to atmospheric N. The relationships shown were based on untransformed values.
Dashed lines represent 95% confidence envelopes.
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F1,32¼ 0.39, P¼ 0.54, R2¼ 0.01). Foliar d15N, however,

was positively related to mean nest density (F1,32¼4.1, P

¼ 0.05, R2 ¼ 0.11; Fig. 1D), and foliar N concentration

and d15N were significantly correlated (Fig. 2B; r¼ 0.35,

P ¼ 0.04) in sea oats. In a related analysis (Plog 2004),

sea oat d15N levels were found to be significantly higher

(ANOVA, F1,34 ¼ 4.6, P ¼ 0.04) in the higher nest

density, southern half of the study area than the lower

nest density, northern half.

DISCUSSION

Enriched d15N levels in soil and foliar tissue in the

high nest region indicate that N from marine sources,

most likely transported by sea turtles to these beaches,

was assimilated by the dune vegetation. The positive

relationship between d15N signatures in sea oats and nest

density supports visible evidence that sea turtle nests at

the Archie Carr National Wildlife Refuge are commonly

invaded by roots from the dune vegetation; Bouchard

and Bjorndahl (2000) found 23% of examined logger-

head nests were invaded by plant roots growing around

and often penetrating shells. Other studies have recorded

vegetation predation on fresh- and brackish-water turtle

eggs. Roots from beachgrass (Ammophila breviligulata)

sometimes surround diamondback terrapin (Malaclemys

terrapin) eggs to form massive clumps (Lazell and Auger

1981) and absorb nutrients through the shell (Stegmann

et al. 1988). Roots from beardgrass (Andropogon sp.)

have been documented to penetrate yellow-bellied turtle

(Chrysemys scripta) eggs (Turkowski 1972).

Although N concentration in sea oats was not

correlated with turtle nest density, the significant

correlation of N concentration with d15N suggests that

N availability on the dunes is limiting and dune plants

exploit higher N levels due to sea turtle nesting. The

spatial scale of our nest-density data may have been too

coarse to capture fine-scale heterogeneity in nutrient

availability experienced by individual plants. But the

elevated N concentration in plants that were subsidized

by the marine-based nutrients in sea turtle nests may

promote growth (Wagner 1964, Hester and Mendels-

sohn 1990, Day 1996) that contributes to the mainte-

nance and stabilization of the coastal dunes. Although

other marine-derived N sources for these dunes exist,

e.g., from seaweed (Sargassum sp.) or carrion (see Plog

2004), compared to turtle eggs, these contributions are

minimal (Bouchard and Bjorndal 2000). Furthermore,

the distribution of these other sources is not concen-

trated in the southern end of the study area (L. Ehrhart,

personal observation).

Sea oats from dunes with lower nest densities may be

able to compensate for the associated reduced soil N

concentration in several ways. Under lower soil N

concentration, there may be reduced shoot : root growth

(Stevenson and Day 1996) to maintain the tissue N

concentration, enhanced mycorrhizal (Sylvia 1986)

associations to increase N uptake, or the symbiotic

relationship with N-fixing bacteria may be magnified

(Dalton et al. 2004). Even with the potential capacity to

fix atmospheric N, the greater accessibility of marine-

derived N to sea oats in the higher density nesting areas

was apparent by the higher d15N values. Using existing

soil N may be more energy efficient than fixing

atmospheric N because symbiotic bacteria require

carbohydrates from the plant to generate ammonia

(NH4
þ), which is absorbed by the host (van Berkum and

Bohlool 1980).

In general, the overall d15N levels found in sea oats,

even in the high density nesting areas, were relatively

low compared to most (e.g., Ben-David et al. 1998a,

Wainright et al. 1998, Anderson and Polis 1999, Fariña

et al. 2003, Ellis et al. 2006) but not all (e.g., Ben-David

et al. 1998b, Bartz and Naiman 2005) examples of

fertilization from animal transport of marine nutrients.

As indicated by Peterson and Fry (1987), N-fixing plants

have lower d15N levels than non-fixers; for example,

alder (Alnus sp.) found near river otter latrines did not

show enriched d15N levels (Ben-David et al. 1998a).

Other factors that may contribute to the reduced d15N
levels in sea oats compared to other studies include a

sampling protocol that did not focus on plants that were

immediately adjacent to the N source (like the Ben-

FIG. 2. Relationships between d15N and N concentration in
(A) dune soil and (B) sea oats foliar tissue.
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David et al. [1998a] river otter latrine study), the lower

density of the N source (compared with islands whose

soil is primarily guano [Anderson and Polis 1999]), the

high leaching of the predominately sandy soil, and the

dynamic nature of the high-energy beach environment.

This environment may be more akin to the riparian

environment found in the salmon studies (Ben-David et

al. 1998b, Bartz and Naiman 2005), where affected

plants also showed reduced levels of d15N enrichment.

Though not measured here, elevated N from the nests

may generate community-level (Day et al. 2004) or

structural effects in the dune vegetation, as shown with

the salmon-borne nutrients (Bartz and Naiman 2005).

d15N may move up trophic levels into sea oat arthropod

communities (Rowan 1980, Hocking and Reimchen

2002), which may produce cascading effects through the

recipient food web (Roth 2003). Moreover, such

nutrient contributions to adjacent dune communities

by sea turtles should be amplified in systems that

experience arribadas (Bruemmer 1995), i.e., concentrat-

ed, mass nesting of Kemp’s ridley (Lepidochelys kempi)

and olive (L. olivacea) turtles, where nest densities can

exceed 100 000 nests/km (Shanker et al. 2004).
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